是。一個(gè)矩陣中行秩與列秩是相等的,矩陣的行秩與列秩統(tǒng)稱為矩陣的秩。在線性代數(shù)中,一個(gè)矩陣A的列秩是A的線性獨(dú)立的縱列的極大數(shù)目。類似地,行秩是A的線性無關(guān)的橫行的極大數(shù)目。
如果把矩陣看成一個(gè)個(gè)行向量或者列向量,秩就是這些行向量或者列向量的秩,也就是極大無關(guān)組中所含向量的個(gè)數(shù)。矩陣的列秩和行秩總是相等的,因此它們可以簡單地稱作矩陣A的秩。通常表示為r(A)、rk(A)或rankA。
定理:矩陣的行秩,列秩,秩都相等。
定理:初等變換不改變矩陣的秩。
定理:如果A可逆,則r(AB)=r(B),r(BA)=r(B)。
定理:矩陣的乘積的秩Rab<=min{Ra,Rb}。
引理:設(shè)矩陣A=(aij)sxn的列秩等于A的列數(shù)n,則A的列秩,秩都等于n。
當(dāng)r(A)<=n-2時(shí),最高階非零子式的階數(shù)<=n-2,任何n-1階子式均為零,而伴隨陣中的各元素就是n-1階子式再加上個(gè)正負(fù)號(hào),所以伴隨陣為0矩陣。
當(dāng)r(A)<=n-1時(shí),最高階非零子式的階數(shù)<=n-1,所以n-1階子式有可能不為零,所以伴隨陣有可能非零(等號(hào)成立時(shí)伴隨陣必為非零)。
大學(xué)院校在線查
高考熱門一鍵查
有疑問就來發(fā)現(xiàn)