對于眾多高中生來說,數(shù)學(xué)是一座巨大的攔路虎,如何高效地學(xué)習(xí)數(shù)學(xué)是大家都很頭疼的問題。今天就為大家收集到了高中三年數(shù)學(xué)知識(shí)點(diǎn)順口溜,涵蓋整個(gè)高中數(shù)學(xué)知識(shí)點(diǎn),念兩遍就可以記住好多知識(shí)點(diǎn)啊,真是神奇!
數(shù)學(xué)思想方法論中學(xué)數(shù)學(xué)一線牽,代數(shù)幾何兩珠連;
三個(gè)基本記心間,四種能力非等閑。
常規(guī)五法天天練,策略六項(xiàng)時(shí)時(shí)變;
精研數(shù)學(xué)七思想,誘思導(dǎo)學(xué)樂無邊。
一線:函數(shù)一條主線(貫穿教材始終)
二珠:代數(shù)、幾何珠聯(lián)璧合(注重知識(shí)交匯)
三基:方法(熟) 知識(shí)(牢) 技能(巧)
四能力:概念運(yùn)算(準(zhǔn)確)、邏輯推理(嚴(yán)謹(jǐn))、空間想象(豐富)、分解問題(靈活)
五法:換元法、配方法、待定系數(shù)法、分析法、歸納法。
六策略:以簡馭繁,正難則反,以退為進(jìn),化異為同,移花接木,以靜思動(dòng)。
七思想:函數(shù)方程最重要,分類整合常用到,
數(shù)形結(jié)合千般好,化歸轉(zhuǎn)化離不了;
有限自將無限描,或然終被必然表,
特殊一般多辨證,知識(shí)交匯步步高。
函數(shù)學(xué)習(xí)口訣正比例函數(shù)是直線,圖象一定過原點(diǎn),
k的正負(fù)是關(guān)鍵,決定直線的象限,
負(fù)k經(jīng)過二四限,x增大y在減,
上下平移k不變,由引得到一次線,
向上加b向下減,圖象經(jīng)過三個(gè)限,
兩點(diǎn)決定一條線,選定系數(shù)是關(guān)鍵。
反比例函數(shù)雙曲線,待定只需一個(gè)點(diǎn),
正k落在一三限,x增大y在減,
圖象上面任意點(diǎn),矩形面積都不變,
對稱軸是角分線,x、y的順序可交換。
二次函數(shù)拋物線,選定需要三個(gè)點(diǎn),
a的正負(fù)開口判,c的大小y軸看,
△的符號(hào)最簡便,x軸上數(shù)交點(diǎn),
a、b同號(hào)軸左邊,拋物線平移a不變,
頂點(diǎn)牽著圖象轉(zhuǎn),三種形式可變換,
配方法作用最關(guān)鍵。
三角函數(shù)三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。
函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。
同角關(guān)系很重要,化簡證明都需要。
正六邊形頂點(diǎn)處,從上到下弦切割;
中心記上數(shù)字1,連結(jié)頂點(diǎn)三角形;
向下三角平方和,倒數(shù)關(guān)系是對角,
變成稅角好查表,化簡證明少不了。
二的一半整數(shù)倍,奇數(shù)化余偶不變,
將其后者視銳角,符號(hào)原來函數(shù)判。
兩角和的余弦值,化為單角好求值,
余弦積減正弦積,換角變形眾公式。
和差化積須同名,互余角度變名稱。
計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,
保持基本量不變,繁難向著簡易變。
逆反原則作指導(dǎo),升冪降次和差積。
條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。
公式順用和逆用,變形運(yùn)用加巧用;
1加余弦想余弦,1減余弦想正弦,
冪升一次角減半,升冪降次它為范;
三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,
先求三角函數(shù)值,再判角取值范圍;
利用直角三角形,形象直觀好換名,
簡單三角的方程,化為最簡求解集;
不等式解不等式的途徑,利用函數(shù)的性質(zhì)。
對指無理不等式,化為有理不等式。
高次向著低次代,步步轉(zhuǎn)化要等價(jià)。
數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。
證不等式的方法,實(shí)數(shù)性質(zhì)威力大。
求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。
非負(fù)常用基本式,正面難則反證法。
還有重要不等式,以及數(shù)學(xué)歸納法。
圖形函數(shù)來幫助,畫圖建模構(gòu)造法。
復(fù)數(shù)虛數(shù)單位i一出,數(shù)集擴(kuò)大到復(fù)數(shù)。
一個(gè)復(fù)數(shù)一對數(shù),橫縱坐標(biāo)實(shí)虛部。
對應(yīng)復(fù)平面上點(diǎn),原點(diǎn)與它連成箭。
箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數(shù)形來結(jié)合。
代數(shù)幾何三角式,相互轉(zhuǎn)化試一試。
代數(shù)運(yùn)算的實(shí)質(zhì),有i多項(xiàng)式運(yùn)算。
i的正整數(shù)次慕,四個(gè)數(shù)值周期現(xiàn)。
一些重要的結(jié)論,熟記巧用得結(jié)果。
虛實(shí)互化本領(lǐng)大,復(fù)數(shù)相等來轉(zhuǎn)化。
利用方程思想解,注意整體代換術(shù)。
幾何運(yùn)算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運(yùn)算,
逆向順向做旋轉(zhuǎn),伸縮全年模長短。
三角形式的運(yùn)算,須將輻角和模辨。
利用棣莫弗公式,乘方開方極方便。
輻角運(yùn)算很奇特,和差是由積商得。
四條性質(zhì)離不得,相等和模與共軛,
兩個(gè)不會(huì)為實(shí)數(shù),比較大小要不得。
復(fù)數(shù)實(shí)數(shù)很密切,須注意本質(zhì)區(qū)別。
正多邊形訣竅歌份相等分割圓,n值必須大于三,
依次連接各分點(diǎn),內(nèi)接正n邊形在眼前。
經(jīng)過分點(diǎn)做切線,切線相交n個(gè)點(diǎn)。
n個(gè)交點(diǎn)做頂點(diǎn),外切正n邊形便出現(xiàn)。
正n邊形很美觀,它有內(nèi)接、外切圓,
內(nèi)接、外切都唯一,兩圓還是同心圓,
它的圖形軸對稱,n條對稱軸 都過圓心點(diǎn),
如果n值為偶數(shù),中心對稱很方便。
正n邊形做計(jì)算,邊心距、半徑是關(guān)鍵,
內(nèi)切、外接圓半徑,邊心距、半徑分別換,
分成直角三角形2n個(gè)整,依此計(jì)算便簡單。
圓中比例線段遇等積,改等比,橫找豎找定相似;
不相似,別生氣,等線等比來代替,
遇等比,改等積,引用射影和圓冪,
平行線,轉(zhuǎn)比例,兩端各自找聯(lián)系。
函數(shù)與數(shù)列數(shù)列函數(shù)子母胎,等差等比自成排。
數(shù)列求和幾多法?通項(xiàng)遞推思路開;
變量分離無好壞,函數(shù)復(fù)合有內(nèi)外。
同增異減定單調(diào),區(qū)間挖隱最值來。
二項(xiàng)式定理二項(xiàng)乘方知多少,萬里源頭通項(xiàng)找;
展開三定項(xiàng)指系,組合系數(shù)楊輝角。
整除證明底變妙,二項(xiàng)求和特值巧;
兩端對稱誰最大?主峰一覽眾山小。
立體幾何多點(diǎn)共線兩面交,多線共面一法巧;
空間三垂優(yōu)弦大,球面兩點(diǎn)劣弧小。
線線關(guān)系線面找,面面成角線線表;
等積轉(zhuǎn)化連射影,能割善補(bǔ)架通橋。
平面解析幾何有向線段直線圓,橢圓雙曲拋物線,
參數(shù)方程極坐標(biāo),數(shù)形結(jié)合稱典范。
笛卡爾的觀點(diǎn)對,點(diǎn)和有序?qū)崝?shù)對,
兩者—一來對應(yīng),開創(chuàng)幾何新途徑。
兩種思想相輝映,化歸思想打前陣;
都說待定系數(shù)法,實(shí)為方程組思想。
三種類型集大成,畫出曲線求方程,
給了方程作曲線,曲線位置關(guān)系判。
四件工具是法寶,坐標(biāo)思想?yún)?shù)好;
平面幾何不能丟,旋轉(zhuǎn)變換復(fù)數(shù)求。
解析幾何是幾何,得意忘形學(xué)不活。
圖形直觀數(shù)入微,數(shù)學(xué)本是數(shù)形學(xué)
方程與不等式函數(shù)方程不等根,常使參數(shù)范圍生;
一正二定三相等,均值定理最值成。
參數(shù)不定比大小,兩式不同三法證;
等與不等無絕對,變量分離方有恒。
大學(xué)院校在線查
高考熱門一鍵查
有疑問就來發(fā)現(xiàn)