日本中文字幕有码在线视频三级,欧美视频一区亚洲不要,久久久综合九色综合88,久久综合久久首页

          更三高考訂閱頁

          關于高中數(shù)學知識點總結歸納

          Ai高考 · 高中數(shù)學
          2022-09-03
          更三高考院校庫

          在學習中,大家最不陌生的就是知識點吧!知識點就是“讓別人看完能理解”或者“通過練習我能掌握”的內(nèi)容。下面小編給大家整理了關于高中數(shù)學知識點總結的內(nèi)容,歡迎閱讀,內(nèi)容僅供參考!

          關于高中數(shù)學知識點總結歸納

          高中數(shù)學知識點

          一、圓及圓的相關量的定義

          1、平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。

          2、圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經(jīng)過圓心的弦叫做直徑。

          3、頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

          4、過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

          5、直線與圓有3種位置關系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。

          6、兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。

          7、在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。

          二、有關圓的字母表示方法

          圓--⊙;半徑—r;弧--⌒;直徑—d

          扇形弧長/圓錐母線—l;周長—C;面積—S三、有關圓的基本性質(zhì)與定理(27個)

          1、點P與圓O的位置關系(設P是一點,則PO是點到圓心的距離):

          r;P在⊙O上,PO=r;P在⊙O內(nèi),PO

          2、圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。

          3、垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。

          4、在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應的其余各組量都分別等等。

          5、一條弧所對的圓周角等于它所對的圓心角的一半。

          6、直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

          7、不在同一直線上的3個點確定一個圓。

          8、一個三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形3個頂點距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點,到三角形3邊距離相等。

          9、直線AB與圓O的位置關系(設OP⊥AB于P,則PO是AB到圓心的距離):

          r;AB與⊙O相切,PO=r。

          10、圓的切線垂直于過切點的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。

          R+r;外切P=R+r;相交R-r

          三、有關圓的計算公式

          1、圓的周長C=2πr=πd

          2、圓的面積S=s=πr2

          3、扇形弧長l=nπr/180

          4、扇形面積S=nπr2/360=rl/2

          5、圓錐側面積S=πrl

          四、圓的方程

          1、圓的標準方程

          在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標準方程是:

          (x-a)^2+(y-b)^2=r^2

          2、圓的一般方程

          把圓的標準方程展開,移項,合并同類項后,可得圓的一般方程是:

          x^2+y^2+Dx+Ey+F=0

          和標準方程對比,其實D=-2a,E=-2b,F=a^2+b^2

          相關知識:圓的離心率e=0。在圓上任意一點的曲率半徑都是r。

          五、圓與直線的位置關系判斷

          平面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是

          討論如下2種情況:

          (1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

          代入x^2+y^2+Dx+Ey+F=0,即成為一個關于x的一元二次方程f(x)=0。

          利用判別式b^2-4ac的符號可確定圓與直線的位置關系如下:

          0,則圓與直線有2交點,即圓與直線相交

          如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切

          如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離

          (2)如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸)

          將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2

          令y=b,求出此時的兩個x值x1,x2,并且我們規(guī)定x1

          當x=-C/Ax2時,直線與圓相離

          當x1

          當x=-C/A=x1或x=-C/A=x2時,直線與圓相切

          圓的定理:

          1、不在同一直線上的三點確定一個圓。

          2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

          推論

          1、①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

          ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

          ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

          2、圓的兩條平行弦所夾的弧相等

          3、圓是以圓心為對稱中心的中心對稱圖形

          4、圓是定點的距離等于定長的點的集合

          5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

          6、圓的外部可以看作是圓心的距離大于半徑的點的集合

          7、同圓或等圓的半徑相等

          8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

          9、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

          10、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

          11、定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角

          12、①直線L和⊙O相交d

          ②直線L和⊙O相切d=r

          r

          13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

          14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑

          15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

          16、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

          17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

          18、圓的外切四邊形的兩組對邊的和相等外角等于內(nèi)對角

          19、如果兩個圓相切,那么切點一定在連心線上

          R+r

          ②兩圓外切d=R+r

          ③兩圓相交R-rr)

          r)

          ⑤兩圓內(nèi)含dr)

          21、定理:相交兩圓的連心線垂直平分兩圓的公共弦

          22、定理:把圓分成n(n≥3):

          (1)依次連結各分點所得的多邊形是這個圓的內(nèi)接正n邊形

          (2)經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

          23、定理:任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

          24、正n邊形的每個內(nèi)角都等于(n-2)×180°/n

          25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

          26、正n邊形的面積Sn=pnrn/2,p表示正n邊形的周長

          27、正三角形面積√3a/4,a表示邊長

          28、如果在一個頂點周圍有k個正n邊形的角,這些角的和應為360°

          29、弧長計算公式:L=n兀R/180

          30、扇形面積公式:S扇形=n兀R^2/360=LR/2

          31、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

          32、定理:一條弧所對的圓周角等于它所對的圓心角的一半

          33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

          34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

          0,扇形面積公式s=1/2__l__r

          高中數(shù)學常見易錯點

          易錯點1 遺忘空集致誤

          由于空集是任何非空集合的真子集,因此B=時也滿足BA.解含有參數(shù)的集合問題時,要特別注意當參數(shù)在某個范圍內(nèi)取值時所給的集合可能是空集這種情況.

          易錯點2 忽視集合元素的三性致誤

          集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求.

          易錯點3 混淆命題的否定與否命題

          命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結論.

          易錯點4 充分條件、必要條件顛倒致誤

          對于兩個條件A,B,如果AB成立,則A是B的充分條件,B是A的必要條件;如果BA成立,則A是B的必要條件,B是A的充分條件;如果AB,則A,B互為充分必要條件.解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據(jù)充分條件和必要條件的概念作出準確的判斷.

          易錯點5 “或”“且”“非”理解不準致誤

          命題p∨q真p真或q真,命題p∨q假p假且q假(概括為一真即真);命題p∧q真p真且q真,命題p∧q假p假或q假(概括為一假即假);綈p真p假,綈p假p真(概括為一真一假).求參數(shù)取值范圍的題目,也可以把“或”“且”“非”與集合的“并”“交”“補”對應起來進行理解,通過集合的運算求解.

          易錯點6 函數(shù)的單調(diào)區(qū)間理解不準致誤

          在研究函數(shù)問題時要時時刻刻想到“函數(shù)的圖像”,學會從函數(shù)圖像上去分析問題、尋找解決問題的方法.對于函數(shù)的幾個不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可.

          易錯點7 判斷函數(shù)的奇偶性忽略定義域致誤

          判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域關于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶函數(shù).

          易錯點8 函數(shù)零點定理使用不當致誤

          如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,但f(a)f(b)>0時,不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點.函數(shù)的零點有“變號零點”和“不變號零點”,對于“不變號零點”函數(shù)的零點定理是“無能為力”的,在解決函數(shù)的零點問題時要注意這個問題.

          易錯點9 導數(shù)的幾何意義不明致誤

          函數(shù)在一點處的導數(shù)值是函數(shù)圖像在該點處的切線的斜率.但在許多問題中,往往是要解決過函數(shù)圖像外的一點向函數(shù)圖像上引切線的問題,解決這類問題的基本思想是設出切點坐標,根據(jù)導數(shù)的幾何意義寫出切線方程.然后根據(jù)題目中給出的其他條件列方程(組)求解.因此解題中要分清是“在某點處的切線”,還是“過某點的切線”.

          易錯點10 導數(shù)與極值關系不清致誤

          f′(x0)=0只是可導函數(shù)f(x)在x0處取得極值的必要條件,即必須有這個條件,但只有這個條件還不夠,還要考慮是否滿足f′(x)在x0兩側異號.另外,已知極值點求參數(shù)時要進行檢驗.

          易錯點11 三角函數(shù)的單調(diào)性判斷致誤

          0時,由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當ω<0時,內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時該函數(shù)的單調(diào)性和函數(shù)y=sin x的單調(diào)性相反,就不能再按照函數(shù)y=sin x的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決.對于帶有絕對值的三角函數(shù)應該根據(jù)圖像,從直觀上進行判斷.

          易錯點12 圖像變換方向把握不準致誤

          0時)或向右(當φ<0時)平行移動|φ|個單位長度;(2)再把所得各點橫坐標縮短(當ω>1時)或伸長(當0<ω<1時)到原來的1ω倍(縱坐標不變);(3)再把所得各點的縱坐標伸長(當A>1時)或縮短(當0

          易錯點13 忽視零向量致誤

          零向量是向量中最特殊的向量,規(guī)定零向量的長度為0,其方向是任意的,零向量與任意向量都共線.它在向量中的位置正如實數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應給予足夠的重視.

          易錯點14 向量夾角范圍不清致誤

          解題時要全面考慮問題.數(shù)學試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關鍵,如當a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況.

          易錯點15 an與Sn關系不清致誤

          在數(shù)列問題中,數(shù)列的通項an與其前n項和Sn之間存在下列關系:an=S1,n=1,Sn-Sn-1,n≥2.這個關系對任意數(shù)列都是成立的,但要注意的是這個關系式是分段的,在n=1和n≥2時這個關系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯的一個地方,在使用這個關系式時要牢牢記住其“分段”的特點.

          易錯點16 對等差、等比數(shù)列的定義、性質(zhì)理解錯誤

          等差數(shù)列的前n項和在公差不為零時是關于n的常數(shù)項為零的二次函數(shù);一般地,有結論“若數(shù)列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N__)是等差數(shù)列.

          易錯點17 數(shù)列中的最值錯誤

          數(shù)列問題中其通項公式、前n項和公式都是關于正整數(shù)n的函數(shù),要善于從函數(shù)的觀點認識和理解數(shù)列問題.數(shù)列的通項an與前n項和Sn的關系是高考的命題重點,解題時要注意把n=1和n≥2分開討論,再看能不能統(tǒng)一.在關于正整數(shù)n的二次函數(shù)中其取最值的點要根據(jù)正整數(shù)距離二次函數(shù)的對稱軸的遠近而定.

          易錯點18 錯位相減求和時項數(shù)處理不當致誤

          錯位相減求和法的適用條件:數(shù)列是由一個等差數(shù)列和一個等比數(shù)列對應項的乘積所組成的,求其前n項和.基本方法是設這個和式為Sn,在這個和式兩端同時乘以等比數(shù)列的公比得到另一個和式,這兩個和式錯一位相減,就把問題轉化為以求一個等比數(shù)列的前n項和或前n-1項和為主的求和問題.這里最容易出現(xiàn)問題的就是錯位相減后對剩余項的處理.

          易錯點19 不等式性質(zhì)應用不當致誤

          在使用不等式的基本性質(zhì)進行推理論證時一定要準確,特別是不等式兩端同時乘以或同時除以一個數(shù)式、兩個不等式相乘、一個不等式兩端同時n次方時,一定要注意使其能夠這樣做的條件,如果忽視了不等式性質(zhì)成立的前提條件就會出現(xiàn)錯誤.

          易錯點20 忽視基本不等式應用條件致誤

          0)的函數(shù),在應用基本不等式求函數(shù)最值時,一定要注意ax,bx的符號,必要時要進行分類討論,另外要注意自變量x的取值范圍,在此范圍內(nèi)等號能否取到.

          易錯點21 解含參數(shù)的不等式時分類討論不當致誤

          0,其中x1,x2(x10,則不等式的解集是(-∞,x1)∪(x2,+∞),如果a<0,則不等式的解集是(x1,x2).

          易錯點22 不等式恒成立問題處理不當致誤

          解決不等式恒成立問題的常規(guī)求法是:借助相應函數(shù)的單調(diào)性求解,其中的主要方法有數(shù)形結合法、變量分離法、主元法.通過最值產(chǎn)生結論.應注意恒成立與存在性問題的區(qū)別,如對任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立問題,但對存在x∈[a,b],使f(x)≤g(x)成立,則為存在性問題,即f(x)min≤g(x)max,應特別注意兩函數(shù)中的最大值與最小值的關系.

          易錯點23 忽視三視圖中的實、虛線致誤

          三視圖是根據(jù)正投影原理進行繪制,嚴格按照“長對正,高平齊,寬相等”的規(guī)則去畫,若相鄰兩物體的表面相交,表面的交線是它們的原分界線,且分界線和可視輪廓線都用實線畫出,不可見的輪廓線用虛線畫出,這一點很容易疏忽.

          易錯點24 面積、體積的計算轉化不靈活致誤

          面積、體積的計算既需要學生有扎實的基礎知識,又要用到一些重要的思想方法,是高考考查的重要題型.因此要熟練掌握以下幾種常用的思想方法.(1)還臺為錐的思想:這是處理臺體時常用的思想方法.(2)割補法:求不規(guī)則圖形面積或幾何體體積時常用.(3)等積變換法:充分利用三棱錐的任意一個面都可作為底面的特點,靈活求解三棱錐的體積.(4)截面法:尤其是關于旋轉體及與旋轉體有關的組合問題,常畫出軸截面進行分析求解.

          易錯點25 隨意推廣平面幾何中的結論致誤

          平面幾何中有些概念和性質(zhì),推廣到空間中不一定成立.例如“過直線外一點只能作一條直線與已知直線垂直”“垂直于同一條直線的兩條直線平行”等性質(zhì)在空間中就不成立.

          易錯點26 對折疊與展開問題認識不清致誤

          折疊與展開是立體幾何中的常用思想方法,此類問題注意折疊或展開過程中平面圖形與空間圖形中的變量與不變量,不僅要注意哪些變了,哪些沒變,還要注意位置關系的變化.

          易錯點27 空間點、線、面位置關系不清致誤

          關于空間點、線、面位置關系的組合判斷類試題是高考全面考查考生對空間位置關系的判定和性質(zhì)掌握程度的理想題型,歷來受到命題者的青睞,解決這類問題的基本思路有兩個:一是逐個尋找反例作出否定的判斷或逐個進行邏輯證明作出肯定的判斷;二是結合長方體模型或?qū)嶋H空間位置(如課桌、教室)作出判斷,但要注意定理應用準確、考慮問題全面細致.

          易錯點28 忽視斜率不存在致誤

          在解決兩直線平行的相關問題時,若利用l1∥l2k1=k2來求解,則要注意其前提條件是兩直線不重合且斜率存在.如果忽略k1,k2不存在的情況,就會導致錯解.這類問題也可以利用如下的結論求解,即直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0平行的必要條件是A1B2-A2B1=0,在求出具體數(shù)值后代入檢驗,看看兩條直線是不是重合從而確定問題的答案.對于解決兩直線垂直的相關問題時也有類似的情況.利用l1⊥l2k1·k2=-1時,要注意其前提條件是k1與k2必須同時存在.利用直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0垂直的充要條件是A1A2+B1B2=0,就可以避免討論.

          易錯點29 忽視零截距致誤

          解決有關直線的截距問題時應注意兩點:一是求解時一定不要忽略截距為零這種特殊情況;二是要明確截距為零的直線不能寫成截距式.因此解決這類問題時要進行分類討論,不要漏掉截距為零時的情況.

          易錯點30 忽視圓錐曲線定義中的條件致誤

          利用橢圓、雙曲線的定義解題時,要注意兩種曲線的定義形式及其限制條件.如在雙曲線的定義中,有兩點是缺一不可的:其一,絕對值;其二,2a<|F1F2|.如果不滿足第一個條件,動點到兩定點的距離之差為常數(shù),而不是差的絕對值為常數(shù),那么其軌跡只能是雙曲線的一支.

          易錯點31 忽視特殊性、誤判直線與圓錐曲線位置關系

          過定點的直線與雙曲線的位置關系問題,基本的解決思路有兩個:一是利用一元二次方程的判別式來確定,但一定要注意,利用判別式的前提是二次項系數(shù)不為零,當二次項系數(shù)為零時,直線與雙曲線的漸近線平行(或重合),也就是直線與雙曲線最多只有一個交點;二是利用數(shù)形結合的思想,畫出圖形,根據(jù)圖形判斷直線和雙曲線各種位置關系.在直線與圓錐曲線的位置關系中,拋物線和雙曲線都有特殊情況,在解題時要注意,不要忘記其特殊性.

          易錯點32 兩個計數(shù)原理不清致誤

          分步加法計數(shù)原理與分類乘法計數(shù)原理是解決排列組合問題最基本的原理,故理解“分類用加、分步用乘”是解決排列組合問題的前提,在解題時,要分析計數(shù)對象的本質(zhì)特征與形成過程,按照事件的結果來分類,按照事件的發(fā)生過程來分步,然后應用兩個基本原理解決.對于較復雜的問題既要用到分類加法計數(shù)原理,又要用到分步乘法計數(shù)原理,一般是先分類,每一類中再分步,注意分類、分步時要不重復、不遺漏,對于“至少、至多”型問題除了可以用分類方法處理外,還可以用間接法處理.

          易錯點33 排列、組合不分致誤

          為了簡化問題和表達方便,解題時應將具有實際意義的排列組合問題符號化、數(shù)學化,建立適當?shù)哪P?,再應用相關知識解決.建立模型的關鍵是判斷所求問題是排列問題還是組合問題,其依據(jù)主要是看元素的組成有沒有順序性,有順序性的是排列問題,無順序性的是組合問題.

          易錯點34 混淆項的系數(shù)與二項式系數(shù)致誤

          在二項式(a+b)n的展開式中,其通項Tr+1=Crnan-rbr是指展開式的第r+1項,因此展開式中第1,2,3,…,n項的二項式系數(shù)分別是C0n,C1n,C2n,…,Cn-1n,而不是C1n,C2n,C3n,…,Cnn.而項的系數(shù)是二項式系數(shù)與其他數(shù)字因數(shù)的積.

          易錯點35 循環(huán)結束的條件判斷不準致誤

          控制循環(huán)結構的是計數(shù)變量和累加變量的變化規(guī)律以及循環(huán)結束的條件.在解答這類題目時首先要弄清楚這兩個變量的變化規(guī)律,其次要看清楚循環(huán)結束的條件,這個條件由輸出要求所決定,看清楚是滿足條件時結束還是不滿足條件時結束.

          易錯點36 條件結構對條件的判斷不準致誤

          條件結構的程序框圖中對判斷條件的分類是逐級進行的,其中沒有遺漏也沒有重復,在解題時對判斷條件要仔細辨別,看清楚條件和函數(shù)的對應關系,對條件中的數(shù)值不要漏掉也不要重復了端點值.

          易錯點37 復數(shù)的概念不清致誤

          對于復數(shù)a+bi(a,b∈R),a叫做實部,b叫做虛部;當且僅當b=0時,復數(shù)a+bi(a,b∈R)是實數(shù)a;當b≠0時,復數(shù)z=a+bi叫做虛數(shù);當a=0且b≠0時,z=bi叫做純虛數(shù).解決復數(shù)概念類試題要仔細區(qū)分以上概念差別,防止出錯.另外,i2=-1是實現(xiàn)實數(shù)與虛數(shù)互化的橋梁,要適時進行轉化,解題時極易丟掉“-”而出錯。

          高考必考數(shù)學公式

          三角函數(shù)公式

          sin30°=1/2,sin45°=√2/2, sin60°=√3/2

          cos30°=√3/2,cos45°=√2/2,cos60°=1/2

          tan30°=√3/3,tan45°=1,tan60°=√3

          cot30°=√3,cot45°=1,cot60°=√3/3

          sin15°=(√6-√2)/4sin75°=(√6+√2)/4cos15°=(√6+√2)/4

          cos75°=(√6-√2)/4(這四個可根據(jù)sin(45°±30°)=sin45°cos30°±cos45°sin30°得出)

          sin18°=(√5-1)/4(這個值在高中競賽和自招中會比較有用,即黃金分割的一半)

          正弦定理:在△abc中,a/sina=b/sinb=c/sinc=2r(其中,r為△abc的外接圓的半徑。)

          三角函數(shù)的`誘導公式(六公式)

          公式一:

          sin(α+k__2π)=sinα

          cos(α+k__2π)=cosα

          tan(α+k__2π)=tanα

          公式二:

          sin(π+α)=-sinα

          cos(π+α)=-cosα

          tan(π+α)=tanα

          公式三:

          sin(-α)=-sinα

          cos(-α)=cosα

          tan(-α)=-tanα

          公式四:

          sin(π-α)=sinα

          cos(π-α)=-cosα

          tan(π-α)=-tanα

          公式五:

          sin(π/2-α)=cosα

          cos(π/2-α)=sinα

          由于π/2+α=π-(π/2-α),由公式四和公式五可得

          公式六:

          sin(π/2+α)=cosα,cos(π/2+α)=-sinα,sin(π/2+α)=cosα

          cos(π/2+α)=-sinα,tan(π/2+α)=-cotα,cot(π/2+α)=-tanα

          sin(π/2-α)=cosα, cos(π/2-α)=sinα,tan(π/2-α)=cotα

          cot(π/2-α)=tanα,sin(3π/2+α)=-cosα,cos(3π/2+α)=sinα

          tan(3π/2+α)=-cotα,cot(3π/2+α)=-tanα,sin(3π/2-α)=-cosα

          cos(3π/2-α)=-sinα,tan(3π/2-α)=cotα,cot(3π/2-α)=tanα

          誘導公式記背訣竅:奇變偶不變,符號看象限。

          和(差)角公式

          三角和公式

          sin(α+β+γ)=sinαcosβcosγ+cosαsinβcosγ+cosαcosβsinγ-sinαsinβsinγ

          cos(α+β+γ)=cosαcosβcoscγ-osαsinβsinγ-sinαcosβsinγ-sinαsinβcosγ

          tan(α+β+γ)=(tanα+tanβ+tanγ-tanαtanβtanγ)/(1-tanαtanβ-tanβtanγ-tanαtanγ)

          (α+β+γ≠π/2+2kπ,α、β、γ≠π/2+2kπ)

          積化和差的四個公式

          sina__cosb=(sin(a+b)+sin(a-b))/2

          cosa__sinb=(sin(a+b)-sin(a-b))/2

          cosa__cosb=(cos(a+b)+cos(a-b))/2

          sina__sinb=-(cos(a+b)-cos(a-b))/2

          和差化積的四個公式:

          sinx+siny=2sin((x+y)/2)__cos((x-y)/2)

          sinx-siny=2cos((x+y)/2)__sin((x-y)/2)

          cosx+cosy=2cos((x+y)/2)__cos((x-y)/2)

          cosx-cosy=-2sin((x+y)/2)__sin((x-y)/2)

          關于高中數(shù)學知識點總結相關文章:

          ★ 高中復習數(shù)學知識點整理總結2021

          ★ 人教版高中數(shù)學必備重要知識點大全整理

          ★ 高中備考數(shù)學內(nèi)容知識點總結整理2021

          ★ 數(shù)學高中的知識點必看

          ★ 高中的數(shù)學知識點2021

          ★ 高考有關高中數(shù)學的重要知識點2021

          ★ 高中必修三數(shù)學知識點總結必看

          ★ 2021高考數(shù)學必備知識難點及公式總結

          ★ 初中數(shù)學三角函數(shù)知識點

          ★ 高一數(shù)學必修三知識點總結2021

          2022高考備考攻略

          高考資訊推薦

          高中數(shù)學

          更三高考為各位高中生整理了高中數(shù)學學習課件、高中數(shù)學學習提分 ... [進入專欄]

          報考信息

          動態(tài)簡章計劃錄取分數(shù)