注意歸一公式、誘導(dǎo)公式的正確性(轉(zhuǎn)化成同名同角三角函數(shù)時,套用歸一公式、誘導(dǎo)公式(奇變、偶不變;符號看象限)時,很容易因為粗心,導(dǎo)致錯誤!一著不慎,滿盤皆輸?。?。
1.證明一個數(shù)列是等差(等比)數(shù)列時,最后下結(jié)論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;
2.最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時,當(dāng)n=k+1時,一定利用上n=k時的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號,得到目標(biāo)式子,下結(jié)論時一定寫上綜上:由①②得證;
3.證明不等式時,有時構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單(所以要有構(gòu)造函數(shù)的意識)。
1.證明線面位置關(guān)系,一般不需要去建系,更簡單;
2.求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,最好要建系;
3.注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系(符號問題、鈍角、銳角問題)。
1.搞清隨機(jī)試驗包含的所有基本事件和所求事件包含的基本事件的個數(shù);
2.搞清是什么概率模型,套用哪個公式;
3.記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;
4.求概率時,正難則反(根據(jù)p1+p2+...+pn=1);
5.注意計數(shù)時利用列舉、樹圖等基本方法;
6.注意放回抽樣,不放回抽樣;
7.注意“零散的”的知識點(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;
8.注意條件概率公式;
9.注意平均分組、不完全平均分組問題。
大學(xué)院校在線查
高考熱門一鍵查
有疑問就來發(fā)現(xiàn)