初中數學各類題型解題技巧
1.數形結合思想
就是根據數學問題的條件和結論之間的內在聯(lián)系,既分析其代數含義,又揭示其幾何意義;使數量關系和圖形巧妙和諧地結合起來,并充分利用這種結合,尋求解體思路,使問題得到解決。
2.聯(lián)系與轉化的思想
事物之間是相互聯(lián)系、相互制約的,是可以相互轉化的。數學學科的各部分之間也是相互聯(lián)系,可以相互轉化的。
在解題時,如果能恰當處理它們之間的相互轉化,往往可以化難為易,化繁為簡。
如:代換轉化、已知與未知的轉化、特殊與一般的轉化、具體與抽象的轉化、部分與整體的轉化、動與靜的轉化等等。
3.分類討論的思想
在數學中,我們常常需要根據研究對象性質的差異,分各種不同情況予以考查;這種分類思考的方法,是一種重要的數學思想方法,同時也是一種重要的解題策略。
4.待定系數法
當我們所研究的數學式子具有某種特定形式時,要確定它,只要求出式子中待確定的字母得值就可以了。為此,把已知條件代入這個待定形式的式子中,往往會得到含待定字母的方程或方程組,然后解這個方程或方程組就使問題得到解決。
5.配方法
就是把一個代數式設法構造成平方式,然后再進行所需要的變化。配方法是初中代數中重要的變形技巧,配方法在分解因式、解方程、討論二次函數等問題,都有重要的作用。
6.換元法
在解題過程中,把某個或某些字母的式子作為一個整體,用一個新的字母表示,以便進一步解決問題的一種方法。換元法可以把一個較為復雜的式子化簡,把問題歸結為比原來更為基本的問題,從而達到化繁為簡,化難為易的目的。
7.分析法
在研究或證明一個命題時,又結論向已知條件追溯,既從結論開始,推求它成立的充分條件,這個條件的成立還不顯然;則再把它當作結論,進一步研究它成立的充分條件,直至達到已知條件為止,從而使命題得到證明。這種思維過程通常稱為“執(zhí)果尋因”
8.綜合法
在研究或證明命題時,如果推理的方向是從已知條件開始,逐步推導得到結論,這種思維過程通常稱為“由因導果”
9.演繹法
由一般到特殊的推理方法。
10.歸納法
由一般到特殊的推理方法。
11.類比法
眾多客觀事物中,存在著一些相互之間有相似屬性的事物,在兩個或兩類事物之間;根據它們的某些屬性相同或相似,推出它們在其他屬性方面也可能相同或相似的推理方法。類比法既可能是特殊到特殊,也可能一般到一般的推理。
函數、方程、不等式
常用的數學思想方法:
⑴數形結合的思想方法。
⑵待定系數法。
⑶配方法。
⑷聯(lián)系與轉化的思想。
⑸圖像的平移變換。
證明角的相等
1.對頂角相等。
2.角(或同角)的補角相等或余角相等。
3.兩直線平行,同位角相等、內錯角相等。
4.凡直角都相等。
5.角平分線分得的兩個角相等。
6.同一個三角形中,等邊對等角。
7.等腰三角形中,底邊上的高(或中線)平分頂角。
8.平行四邊形的對角相等。
9.菱形的每一條對角線平分一組對角。
10.等腰梯形同一底上的兩個角相等。
11.關系定理:同圓或等圓中,若有兩條?。ɑ蛳摇⒒蛳倚木啵┫嗟?,則它們所 對的圓心角相等。
12.圓內接四邊形的任何一個外角都等于它的內對角。
13.同弧或等弧所對的圓周角相等。
14.弦切角等于它所夾的弧對的圓周角。
15.同圓或等圓中,如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等。
16.全等三角形的對應角相等。
17.相似三角形的對應角相等。
18.利用等量代換。
19.利用代數或三角計算出角的度數相等
20.切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,并且這一點和圓心的連線平分兩條切線的夾角。
證明直線的平行或垂直
1.證明兩條直線平行的主要依據和方法
⑴定義、在同一平面內不相交的兩條直線平行。
⑵平行定理、兩條直線都和第三條直線平行,這兩條直線也互相平行。
⑶平行線的判定:同位角相等(內錯角或同旁內角),兩直線平行。
⑷平行四邊形的對邊平行。
⑸梯形的兩底平行。
⑹三角形(或梯形)的中位線平行與第三邊(或兩底)
⑺一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,則這條直線平行于三角形的第三邊。
2.證明兩條直線垂直的主要依據和方法
⑴兩條直線相交所成的四個角中,由一個是直角時,這兩條直線互相垂直。
⑵直角三角形的兩直角邊互相垂直。
⑶三角形的兩個銳角互余,則第三個內角為直角。
⑷三角形一邊的中線等于這邊的一半,則這個三角形為直角三角形。
⑸三角形一邊的平方等于其他兩邊的平方和,則這邊所對的內角為直角。
⑹三角形(或多邊形)一邊上的高垂直于這邊。
⑺等腰三角形的頂角平分線(或底邊上的中線)垂直于底邊。
⑻矩形的兩臨邊互相垂直。
⑼菱形的對角線互相垂直。
⑽平分弦(非直徑)的直徑垂直于這條弦,或平分弦所對的弧的直徑垂直于這條弦。
⑾半圓或直徑所對的圓周角是直角。
⑿圓的切線垂直于過切點的半徑。
⒀相交兩圓的連心線垂直于兩圓的公共弦。
大學院校在線查
有疑問就來發(fā)現(xiàn)