lnx的導(dǎo)數(shù)是2/x。令y=lnx=2lnx,則y′=(2lnx)′=2*(lnx)′=2*1/x=2/x?;蛘吡顃=x,則y=lnx=lnt,那么y′=(lnt)′=1/t*t′=1/x*(x)′=1/x*2x=2/x,即lnx的導(dǎo)數(shù)是2/x。
(1)(f(x)±g(x))'=f'(x)±g'(x)
例:(x^2-sinx)'=(x^2)'-(sinx)'=2x-cosx
(2)(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)
例:(x*sinx)'=(x)'*sinx+x*(sinx)'=sinx+x*cosx
(3)(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/(g(x))^2
例:(sinx/x)'=((sinx)'*x-sinx*(x)')/x^2=(x*cosx-sinx)/x^2
2、常用的導(dǎo)數(shù)公式
(lnx)'=1/x、(e^x)'=e^x、(C)'=0(C為常數(shù))、(sinx)'=cosx、(cosx)'=-sinx
由基本函數(shù)的和、差、積、商或相互復(fù)合構(gòu)成的函數(shù)的導(dǎo)函數(shù)則可以通過(guò)函數(shù)的求導(dǎo)法則來(lái)推導(dǎo)。基本的.求導(dǎo)法則如下:
1、求導(dǎo)的線性:對(duì)函數(shù)的線性組合求導(dǎo),等于先對(duì)其中每個(gè)部分求導(dǎo)后再取線性組合。
2、兩個(gè)函數(shù)的乘積的導(dǎo)函數(shù):一導(dǎo)乘二+一乘二導(dǎo)。
3、兩個(gè)函數(shù)的商的導(dǎo)函數(shù)也是一個(gè)分式:(子導(dǎo)乘母-子乘母導(dǎo))除以母平方。
4、如果有復(fù)合函數(shù),則用鏈?zhǔn)椒▌t求導(dǎo)。
lnx和logx都是對(duì)數(shù)表達(dá)式,但是對(duì)數(shù)的底不同,lnx的底是e(約等于2.71828),logx的底等于10。
lnx相當(dāng)于log(e)x,而logx是log(10)x的簡(jiǎn)寫(xiě)。如果底不是10(例如是2時(shí))則不可寫(xiě)成logx,而要寫(xiě)成log(2)10。此外,用于換底公式還有如下關(guān)系:log(a)b=lna/lnb。
導(dǎo)數(shù),也叫導(dǎo)函數(shù)值。又名微商,是微積分中的重要基礎(chǔ)概念。當(dāng)函數(shù)y=f(x)的自變量x在一點(diǎn)x0上產(chǎn)生一個(gè)增量Δx時(shí),函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時(shí)的極限a如果存在,a即為在x0處的導(dǎo)數(shù),記作f'(x0)或df(x0)/dx。
導(dǎo)數(shù)是函數(shù)的局部性質(zhì)。一個(gè)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)描述了這個(gè)函數(shù)在這一點(diǎn)附近的變化率。如果函數(shù)的自變量和取值都是實(shí)數(shù)的話,函數(shù)在某一點(diǎn)的導(dǎo)數(shù)就是該函數(shù)所代表的曲線在這一點(diǎn)上的切線斜率。導(dǎo)數(shù)的本質(zhì)是通過(guò)極限的概念對(duì)函數(shù)進(jìn)行局部的線性逼近。
大學(xué)院校在線查
高考熱門(mén)一鍵查
有疑問(wèn)就來(lái)發(fā)現(xiàn)