相交弦定理證明過(guò)程
相交弦定理,經(jīng)過(guò)圓內(nèi)一點(diǎn)引兩條弦,各弦被這點(diǎn)所分成的兩線段的積相等。幾何語(yǔ)言:若圓內(nèi)任意弦AB、弦CD交于點(diǎn)P,則PA·PB=PC·PD(相交弦定理)。
相交弦定理證明
證明:連結(jié)AC,BD
由圓周角定理的推論,得∠A=∠D,∠C=∠B。(圓周角推論2: 在同圓或等圓中,同(等)弧所對(duì)圓周角相等.)
∴△PAC∽△PDB
∴PA∶PD=PC∶PB,PA·PB=PC·PD
注:其逆定理可作為證明四邊形是圓的內(nèi)接四邊形的方法. P點(diǎn)若選在圓內(nèi)任意一點(diǎn)更具一般性。其逆定理也可用于證明四點(diǎn)共圓。
相交弦定理什么時(shí)候?qū)W
現(xiàn)在不論是人教版還是北師大版的初中教科書(shū)中,都取消了相交弦定理。在早期的人教版本中,在直線和圓的位置關(guān)系中會(huì)找的到相交弦定理。
大學(xué)院校在線查
高考熱門(mén)一鍵查
有疑問(wèn)就來(lái)發(fā)現(xiàn)