即使是復(fù)習(xí)過的內(nèi)容仍須定期鞏固,但是復(fù)習(xí)的次數(shù)應(yīng)隨時(shí)間的增長(zhǎng)而逐步減小,間隔也可以逐漸拉長(zhǎng)。可以當(dāng)天鞏固新知識(shí),每周進(jìn)行周小結(jié),每月進(jìn)行階段性總結(jié),期中、期末進(jìn)行全面系統(tǒng)的學(xué)期復(fù)習(xí)。
1.有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對(duì)問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
2.判定兩個(gè)平面平行的方法:
(1)根據(jù)定義--證明兩平面沒有公共點(diǎn);
(2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;
(3)證明兩平面同垂直于一條直線。
3.兩個(gè)平面平行的主要性質(zhì):
(1)由定義知:“兩平行平面沒有公共點(diǎn)”;
(2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面”;
(3)兩個(gè)平面平行的性質(zhì)定理:“如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行”;
(4)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面;
(5)夾在兩個(gè)平行平面間的平行線段相等;
(6)經(jīng)過平面外一點(diǎn)只有一個(gè)平面和已知平面平行。
1.等差數(shù)列的定義
如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.
2.等差數(shù)列的通項(xiàng)公式
若等差數(shù)列{an}的首項(xiàng)是a1,公差是d,則其通項(xiàng)公式為an=a1+(n-1)d.
3.等差中項(xiàng)
如果A=(a+b)/2,那么A叫做a與b的等差中項(xiàng).
4.等差數(shù)列的常用性質(zhì)
(1)通項(xiàng)公式的推廣:an=am+(n-m)d(n,m∈N_).
(2)若{an}為等差數(shù)列,且m+n=p+q,
則am+an=ap+aq(m,n,p,q∈N_).
(3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列.
(4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.
(5)S2n-1=(2n-1)an.
(6)若n為偶數(shù),則S偶-S奇=nd/2;
若n為奇數(shù),則S奇-S偶=a中(中間項(xiàng)).
注意:
一個(gè)推導(dǎo)
利用倒序相加法推導(dǎo)等差數(shù)列的前n項(xiàng)和公式:
Sn=a1+a2+a3+…+an,①
Sn=an+an-1+…+a1,②
①+②得:Sn=n(a1+an)/2
兩個(gè)技巧
已知三個(gè)或四個(gè)數(shù)組成等差數(shù)列的一類問題,要善于設(shè)元.
(1)若奇數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-2d,a-d,a,a+d,a+2d,….
(2)若偶數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項(xiàng)再依據(jù)等差數(shù)列的定義進(jìn)行對(duì)稱設(shè)元.
四種方法
等差數(shù)列的判斷方法
(1)定義法:對(duì)于n≥2的任意自然數(shù),驗(yàn)證an-an-1為同一常數(shù);
(2)等差中項(xiàng)法:驗(yàn)證2an-1=an+an-2(n≥3,n∈N_)都成立;
(3)通項(xiàng)公式法:驗(yàn)證an=pn+q;
(4)前n項(xiàng)和公式法:驗(yàn)證Sn=An2+Bn.
注:后兩種方法只能用來判斷是否為等差數(shù)列,而不能用來證明等差數(shù)列.
大學(xué)院校在線查
高考熱門一鍵查
有疑問就來發(fā)現(xiàn)