三角函數(shù)是基本初等函數(shù)之一,是以角度(數(shù)學上最常用弧度制,下同)為自變量,角度對應任意角終邊與單位圓交點坐標或其比值為因變量的函數(shù)。下面是小編整理的九年級下冊數(shù)學銳角三角函數(shù)知識點,僅供參考希望能夠幫助到大家。
九年級下冊數(shù)學銳角三角函數(shù)知識點
銳角三角函數(shù)的定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的銳角三角函數(shù)。
正弦等于對邊比斜邊
余弦等于鄰邊比斜邊
正切等于對邊比鄰邊
余切等于鄰邊比對邊
正割等于斜邊比鄰邊
余割等于斜邊比對邊
正切與余切互為倒數(shù)
它的本質是任意角的集合與一個比值的集合的變量之間的映射。通常的三角函數(shù)是在平面直角坐標系中定義的,其定義域為整個實數(shù)域。另一種定義是在直角三角形中,但并不完全?,F(xiàn)代數(shù)學把它們描述成無窮數(shù)列的極限和微分方程的解,將其定義擴展到復數(shù)系。
由于三角函數(shù)的周期性,它并不具有單值函數(shù)意義上的反函數(shù)。
它有六種基本函數(shù)(初等基本表示):
函數(shù)名 正弦 余弦 正切 余切 正割 余割
在平面直角坐標系xOy中,從點O引出一條射線OP,設旋轉角為θ,設OP=r,P點的坐標為(x,y)有
正弦函數(shù) sinθ=y/r
余弦函數(shù) cosθ=x/r
正切函數(shù) tanθ=y/x
余切函數(shù) cotθ=x/y
正割函數(shù) secθ=r/x
余割函數(shù) cscθ=r/y
(斜邊為r,對邊為y,鄰邊為x。)
以及兩個不常用,已趨于被淘汰的函數(shù):
正矢函數(shù) versinθ =1-cosθ
余矢函數(shù) coversθ =1-sinθ
銳角三角函數(shù)的性質
1、銳角三角函數(shù)定義
銳角角A的正弦,余弦和正切都叫做角A的銳角三角函數(shù)
2、互余角的三角函數(shù)間的關系。
sin(90°-α)=cosα, cos(90°-α)=sinα,
tan(90°-α)=cotα, cot(90°-α)=tanα.
3、同角三角函數(shù)間的關系
平方關系:sin2α+cos2α=1
倒數(shù)關系:cotα=(或tanα·cotα=1)
商的關系:tanα= , cotα=.
(這三個關系的證明均可由定義得出)
4、三角函數(shù)值
(1)特殊角三角函數(shù)值
(2)0°~90°的任意角的三角函數(shù)值,查三角函數(shù)表。
(3)銳角三角函數(shù)值的變化情況
(i)銳角三角函數(shù)值都是正值
(ii)當角度在0°~90°間變化時,
正弦值隨著角度的增大(或減小)而增大(或減小)
余弦值隨著角度的增大(或減小)而減小(或增大)
正切值隨著角度的增大(或減小)而增大(或減小)
余切值隨著角度的增大(或減小)而減小(或增大)
(iii)當角度在0°≤α≤90°間變化時,
0≤sinα≤1, 1≥cosα≥0,
當角度在0°<α<90°間變化時,
0.
數(shù)學的學習思維方法
1比較法
通過對比數(shù)學條件及問題的異同點,研究產(chǎn)生異同點的原因,從而發(fā)現(xiàn)解決問題的方法,叫比較法。
比較法要注意:
(1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。
(2)找聯(lián)系與區(qū)別,這是比較的實質。
(3)必須在同一種關系下(同一種標準)進行比較,這是“比較”的基本條件。
(4)要抓住主要內容進行比較,盡量少用“窮舉法”進行比較,那樣會使重點不突出。
(5)因為數(shù)學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯。
2公式法
運用定律、公式、規(guī)則、法則來解決問題的方法。它體現(xiàn)的是由一般到特殊的演繹思維。公式法簡便、有效,也是孩子學習數(shù)學必須學會和掌握的一種方法。但一定要讓孩子對公式、定律、規(guī)則、法則有一個正確而深刻的理解,并能準確運用。
數(shù)學勾股定理知識點
1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三邊長a,b,c滿足a2+b2=c2。,那么這個三角形是直角三角形。
3.經(jīng)過證明被確認正確的命題叫做定理。
我們把題設、結論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)
九年級下冊數(shù)學銳角三角函數(shù)知識點
大學院校在線查
有疑問就來發(fā)現(xiàn)