中國古代稱直角三角形為勾股形,并且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。下面是小編整理的八年級上冊數(shù)學(xué)勾股定理知識點(diǎn),僅供參考希望能夠幫助到大家。
八年級上冊數(shù)學(xué)勾股定理知識點(diǎn)
1.勾股定理的內(nèi)容:如果直角三角形的兩直角邊分別是a、b,斜邊為c,那么a2+b2=c2.即直角三角形中兩直角邊的平方和等于斜邊的平方。
注:勾最短的邊、股較長的直角邊、弦斜邊。
勾股定理又叫畢達(dá)哥拉斯定理
2.勾股定理的逆定理:
如果三角形中兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形。
3.勾股數(shù):
滿足a2 +b2=c2的三個正整數(shù),稱為勾股數(shù).勾股數(shù)擴(kuò)大相同倍數(shù)后,仍為勾股數(shù).常用勾股數(shù):3、4、5; 5、12、13;7、24、25;8、15、17。
4.勾股定理常常用來算線段長度,對于初中階段的線段的計算起到很大的作用
例題精講:
練習(xí):
例1:若一個直角三角形三邊的.長分別是三個連續(xù)的自然數(shù),則這個三角形的周長為
解析:可知三邊長度為3,4,5,因此周長為12
(變式)一個直角三角形的三邊為三個連續(xù)偶數(shù),則它的三邊長分別為
解析:可知三邊長度為6,8,10,則周長為24
例2:已知直角三角形的兩邊長分別為3、4,求第三邊長.
解析:第一種情況:當(dāng)直角邊為3和4時,則斜邊為5
第二種情況:當(dāng)斜邊長度為4時,一條直角邊為3,則另一邊為根號7
《點(diǎn)評》此題是一道易錯題目,同學(xué)們應(yīng)該認(rèn)真審題!
例3:一個直角三角形中,兩直角邊長分別為3和4,下列說法正確的是( )
A.斜邊長為25
B.三角形周長為25
C.斜邊長為5
D.三角形面積為20
解析:根據(jù)勾股定理,可知斜邊長度為5,選擇C
初中數(shù)學(xué)的方法和技巧
多做
主要是指做習(xí)題,學(xué)數(shù)學(xué)一定要做習(xí)題,并且應(yīng)該適當(dāng)?shù)囟嘧鲂?。做?xí)題的目的首先是熟練和鞏固學(xué)習(xí)的知識;其次是初步啟發(fā)靈活應(yīng)用知識和培養(yǎng)獨(dú)立思考的能力;第三是融會貫通,把不同內(nèi)容的數(shù)學(xué)知識溝通起來。在做習(xí)題時,要認(rèn)真審題,認(rèn)真思考,應(yīng)該用什么方法做?能否有簡便解法?做到邊做邊思考邊總結(jié),通過練習(xí)加深對知識的理解。
必須要有錯題本
說到錯題本不少同學(xué)都覺得自己的記憶力好,不需要錯題本就能記住,這是一種“錯覺”,每個人都有這種感覺,等到題目增多,學(xué)習(xí)內(nèi)容加深,這時就會發(fā)現(xiàn)自己力不從心了。
錯題本能夠隨時記錄自己的知識短板,幫助強(qiáng)化知識體系,有助于提升學(xué)習(xí)效率。有很多學(xué)霸都是因為積極使用了錯題本,而考取了高分。
初中數(shù)學(xué)特殊三角函數(shù)值
1.cos30°=根號3/2。
2.sin260°+cos260°=1.
3.2sin30°+tan45°=2.
4.tan45°=1.
5.cos60°+sin30°=1.
八年級上冊數(shù)學(xué)勾股定理知識點(diǎn)
大學(xué)院校在線查
高考熱門一鍵查
有疑問就來發(fā)現(xiàn)