數(shù)學(xué)想要得高分,就要把大部分的精力放在基礎(chǔ)知識和解題的基本技能上面,因為在數(shù)學(xué)的考試中,基礎(chǔ)題占了試卷的大部分,所以基礎(chǔ)知識一定要記牢固。下面是小編整理的新西師版數(shù)學(xué)六年級下冊知識點,僅供參考希望能夠幫助到大家。
新西師版數(shù)學(xué)六年級下冊知識點
典型應(yīng)用題:具有獨特的結(jié)構(gòu)特征的和特定的解題規(guī)律的復(fù)合應(yīng)用題,通常叫做典型應(yīng)用題。
(1)平均數(shù)問題:平均數(shù)是等分除法的發(fā)展。
解題關(guān)鍵:在于確定總數(shù)量和與之相對應(yīng)的總份數(shù)。
算術(shù)平均數(shù):已知幾個不相等的同類量和與之相對應(yīng)的份數(shù),求平均每份是多少。數(shù)量關(guān)系式:數(shù)量之和÷數(shù)量的個數(shù)=算術(shù)平均數(shù)。
加權(quán)平均數(shù):已知兩個以上若干份的平均數(shù),求總平均數(shù)是多少。
數(shù)量關(guān)系式 (部分平均數(shù)×權(quán)數(shù))的總和÷(權(quán)數(shù)的和)=加權(quán)平均數(shù)。
差額平均數(shù):是把各個大于或小于標(biāo)準(zhǔn)數(shù)的部分之和被總份數(shù)均分,求的是標(biāo)準(zhǔn)數(shù)與各數(shù)相差之和的平均數(shù)。
數(shù)量關(guān)系式:(大數(shù)-小數(shù))÷2=小數(shù)應(yīng)得數(shù) 數(shù)與各數(shù)之差的和÷總份數(shù)=數(shù)應(yīng)給數(shù) 數(shù)與個數(shù)之差的和÷總份數(shù)=最小數(shù)應(yīng)得數(shù)。
例:一輛汽車以每小時 100 千米 的速度從甲地開往乙地,又以每小時 60 千米的速度從乙地開往甲地。求這輛車的平均速度。
分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設(shè)為“ 1 ”,則汽車行駛的總路程為“ 2 ”,從甲地到乙地的速度為 100 ,所用的時間為1÷100 ,汽車從乙地到甲地速度為 60 千米 ,所用的時間是1÷60 ,汽車共行的時間為1÷100 +1÷60, 汽車的平均速度為 2 ÷(1÷100 +1÷60) =75 (千米)
(2)歸一問題:已知相互關(guān)聯(lián)的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問題稱之為歸一問題。
根據(jù)求“單一量”的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。
根據(jù)球癡單一量之后,解題采用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。
一次歸一問題,用一步運算就能求出“單一量”的歸一問題。又稱“單歸一?!?/p>
兩次歸一問題,用兩步運算就能求出“單一量”的歸一問題。又稱“雙歸一?!?/p>
正歸一問題:用等分除法求出“單一量”之后,再用乘法計算結(jié)果的歸一問題。
反歸一問題:用等分除法求出“單一量”之后,再用除法計算結(jié)果的歸一問題。
解題關(guān)鍵:從已知的一組對應(yīng)量中用等分除法求出一份的數(shù)量(單一量),然后以它為標(biāo)準(zhǔn),根據(jù)題目的要求算出結(jié)果。
數(shù)量關(guān)系式:單一量×份數(shù)=總數(shù)量(正歸一)
總數(shù)量÷單一量=份數(shù)(反歸一)
例一個織布工人,在七月份織布 4774 米 , 照這樣計算,織布 6930 米 ,需要多少天?
分析:必須先求出平均每天織布多少米,就是單一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)
(3)歸總問題:是已知單位數(shù)量和計量單位數(shù)量的個數(shù),以及不同的單位數(shù)量(或單位數(shù)量的個數(shù)),通過求總數(shù)量求得單位數(shù)量的個數(shù)(或單位數(shù)量)。
特點:兩種相關(guān)聯(lián)的量,其中一種量變化,另一種量也跟著變化,不過變化的規(guī)律相反,和反比例算法彼此相通。
數(shù)量關(guān)系式:單位數(shù)量×單位個數(shù)÷另一個單位數(shù)量=另一個單位數(shù)量 單位數(shù)量×單位個數(shù)÷另一個單位數(shù)量= 另一個單位數(shù)量。
例 修一條水渠,原計劃每天修 800 米 , 6 天修完。實際 4 天修完,每天修了多少米?
分析:因為要求出每天修的長度,就必須先求出水渠的長度。所以也把這類應(yīng)用題叫做“歸總問題”。不同之處是“歸一”先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。 80 0 × 6 ÷ 4=1200 (米)
(4) 和差問題:已知大小兩個數(shù)的和,以及他們的差,求這兩個數(shù)各是多少的應(yīng)用題叫做和差問題。
解題關(guān)鍵:是把大小兩個數(shù)的和轉(zhuǎn)化成兩個大數(shù)的和(或兩個小數(shù)的和),然后再求另一個數(shù)。
解題規(guī)律:(和+差)÷2 = 大數(shù) 大數(shù)-差=小數(shù)
(和-差)÷2=小數(shù) 和-小數(shù)= 大數(shù)
例 某加工廠甲班和乙班共有工人 94 人,因工作需要臨時從乙班調(diào) 46 人到甲班工作,這時乙班比甲班人數(shù)少 12 人,求原來甲班和乙班各有多少人?
分析:從乙班調(diào) 46 人到甲班,對于總數(shù)沒有變化,現(xiàn)在把乙數(shù)轉(zhuǎn)化成 2 個乙班,即 9 4 - 12 ,由此得到現(xiàn)在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在調(diào)出 46 人之前應(yīng)該為 41+46=87 (人),甲班為 9 4 - 87=7 (人)
(5)和倍問題:已知兩個數(shù)的和及它們之間的倍數(shù) 關(guān)系,求兩個數(shù)各是多少的應(yīng)用題,叫做和倍問題。
解題關(guān)鍵:找準(zhǔn)標(biāo)準(zhǔn)數(shù)(即1倍數(shù))一般說來,題中說是“誰”的幾倍,把誰就確定為標(biāo)準(zhǔn)數(shù)。求出倍數(shù)和之后,再求出標(biāo)準(zhǔn)的數(shù)量是多少。根據(jù)另一個數(shù)(也可能是幾個數(shù))與標(biāo)準(zhǔn)數(shù)的倍數(shù)關(guān)系,再去求另一個數(shù)(或幾個數(shù))的數(shù)量。
解題規(guī)律:和÷倍數(shù)和=標(biāo)準(zhǔn)數(shù) 標(biāo)準(zhǔn)數(shù)×倍數(shù)=另一個數(shù)
例:汽車運輸場有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運輸場有大貨車和小汽車各有多少輛?
分析:大貨車比小貨車的5倍還多7輛,這 7 輛也在總數(shù) 115 輛內(nèi),為了使總數(shù)與( 5+1 )倍對應(yīng),總車輛數(shù)應(yīng)( 115-7 )輛 。
列式為( 115-7 )÷( 5+1 ) =18 (輛), 18 × 5+7=97 (輛)
(6)差倍問題:已知兩個數(shù)的差,及兩個數(shù)的倍數(shù)關(guān)系,求兩個數(shù)各是多少的應(yīng)用題。
解題規(guī)律:兩個數(shù)的差÷(倍數(shù)-1 )= 標(biāo)準(zhǔn)數(shù) 標(biāo)準(zhǔn)數(shù)×倍數(shù)=另一個數(shù)。
例 甲乙兩根繩子,甲繩長 63 米 ,乙繩長 29 米 ,兩根繩剪去同樣的長度,結(jié)果甲所剩的長度是乙繩 長的 3 倍,甲乙兩繩所剩長度各多少米? 各減去多少米?
分析:兩根繩子剪去相同的一段,長度差沒變,甲繩所剩的長度是乙繩的 3 倍,實比乙繩多( 3-1 )倍,以乙繩的長度為標(biāo)準(zhǔn)數(shù)。列式( 63-29 )÷( 3-1 ) =17 (米)…乙繩剩下的長度, 17 × 3=51 (米)…甲繩剩下的長度, 29-17=12 (米)…剪去的長度。
(7)行程問題:關(guān)于走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、杜速度和、速度差等概念,了解他們之間的關(guān)系,再根據(jù)這類問題的規(guī)律解答。
解題關(guān)鍵及規(guī)律:
同時同地相背而行:路程=速度和×?xí)r間。 同時相向而行:相遇時間=速度和×?xí)r間
同時同向而行(速度慢的在前,快的在后):追及時間=路程速度差。
同時同地同向而行(速度慢的在后,快的在前):路程=速度差×?xí)r間。
例 甲在乙的后面 28 千米 ,兩人同時同向而行,甲每小時行 16 千米 ,乙每小時行 9 千米 ,甲幾小時追上乙?
分析:甲每小時比乙多行( 16-9 )千米,也就是甲每小時可以追近乙( 16-9 )千米,這是速度差。
已知甲在乙的后面 28 千米 (追擊路程), 28 千米 里包含著幾個( 16-9 )千米,也就是追擊所需要的時間。列式 2 8 ÷ ( 16-9 ) =4 (小時)
(8)流水問題:一般是研究船在“流水”中航行的問題。它是行程問題中比較特殊的一種類型,它也是一種和差問題。它的特點主要是考慮水速在逆行和順行中的不同作用。
船速:船在靜水中航行的速度。水速:水流動的速度。
順?biāo)俣龋捍樍骱叫械乃俣取D嫠俣龋捍媪骱叫械乃俣取?/p>
順?biāo)?船速+水速;逆速=船速-水速
解題關(guān)鍵:因為順流速度是船速與水速的和,逆流速度是船速與水速的差,所以流水問題當(dāng)作和差問題解答。 解題時要以水流為線索。
解題規(guī)律:船行速度=(順?biāo)俣? 逆流速度)÷2;流水速度=(順流速度逆流速度)÷2
路程=順流速度× 順流航行所需時間;路程=逆流速度×逆流航行所需時間
例 一只輪船從甲地開往乙地順?biāo)?,每小時行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比順?biāo)嘈?2 小時,已知水速每小時 4 千米。求甲乙兩地相距多少千米?
分析:此題必須先知道順?biāo)乃俣群晚標(biāo)枰臅r間,或者逆水速度和逆水的時間。已知順?biāo)俣群退?速度,因此不難算出逆水的速度,但順?biāo)玫臅r間,逆水所用的時間不知道,只知道順?biāo)饶嫠儆?2 小時,抓住這一點,就可以就能算出順?biāo)畯募椎氐揭业氐乃玫臅r間,這樣就能算出甲乙兩地的路程。列式為 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5(小時) 28 ×5=140 (千米)。
(9)還原問題:已知某未知數(shù),經(jīng)過一定的四則運算后所得的結(jié)果,求這個未知數(shù)的應(yīng)用題,我們叫做還原問題。
解題關(guān)鍵:要弄清每一步變化與未知數(shù)的關(guān)系。
解題規(guī)律:從最后結(jié)果 出發(fā),采用與原題中相反的運算(逆運算)方法,逐步推導(dǎo)出原數(shù)。
根據(jù)原題的運算順序列出數(shù)量關(guān)系,然后采用逆運算的方法計算推導(dǎo)出原數(shù)。
解答還原問題時注意觀察運算的順序。若需要先算加減法,后算乘除法時別忘記寫括號。
例 某小學(xué)三年級四個班共有學(xué)生 168 人,如果四班調(diào) 3 人到三班,三班調(diào) 6 人到二班,二班調(diào) 6 人到一班,一班調(diào) 2 人到四班,則四個班的人數(shù)相等,四個班原有學(xué)生多少人?
分析:當(dāng)四個班人數(shù)相等時,應(yīng)為 168 ÷ 4 ,以四班為例,它調(diào)給三班 3 人,又從一班調(diào)入 2 人,所以四班原有的人數(shù)減去 3 再加上 2 等于平均數(shù)。四班原有人數(shù)列式為 168 ÷ 4-2+3=43 (人)
一班原有人數(shù)列式為 168 ÷ 4-6+2=38 (人);二班原有人數(shù)列式為 168 ÷ 4-6+6=42 (人) 三班原有人數(shù)列式為 168 ÷ 4-3+6=45 (人)。
(10)植樹問題:這類應(yīng)用題是以“植樹”為內(nèi)容。凡是研究總路程、株距、段數(shù)、棵樹四種數(shù)量關(guān)系的應(yīng)用題,叫做植樹問題。
解題關(guān)鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹,然后按基本公式進(jìn)行計算。
解題規(guī)律:沿線段植樹:
_棵樹=段數(shù)+1 棵樹=總路程÷株距+1 ;_株距=總路程÷(棵樹-1) 總路程=株距×(棵樹-1)
沿周長植樹:
棵樹=總路程÷株距 株距=總路程÷棵樹 總路程=株距×棵樹
例 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米 。后來全部改裝,只埋了201 根。求改裝后每相鄰兩根的間距。
分析:本題是沿線段埋電線桿,要把電線桿的根數(shù)減掉一。列式為 50 ×( 301-1 )÷( 201-1 ) =75 (米)
(11)盈虧問題:是在等分除法的基礎(chǔ)上發(fā)展起來的。 他的特點是把一定數(shù)量的物品,平均分配給一定數(shù)量的人,在兩次分配中,一次有余,一次不足(或兩次都有余,或兩次都不足),已知所余和不足的數(shù)量,求物品適量和參加分配人數(shù)的問題,叫盈虧問題。
解題關(guān)鍵:盈虧問題的解法要點是先求兩次分配中分配者沒份所得物品數(shù)量的差,再求兩次分配中各次共分物品的差(也稱總差額),用前一個差去除后一個差,就得到分配者的數(shù),進(jìn)而再求得物品數(shù)。
解題規(guī)律:總差額÷每人差額=人數(shù)
總差額的求法可以分為以下四種情況:
第一次多余,第二次不足,總差額=多余+ 不足
第一次正好,第二次多余或不足 ,總差額=多余或不足
第一次多余,第二次也多余,總差額=大多余- 小多余
第一次不足,第二次也不足, 總差額= 大不足-小不足
例 參加美術(shù)小組的同學(xué),每個人分的相同的支數(shù)的色筆,如果小組 10 人,則多 25 支,如果小組有 12 人,色筆多余 5 支。求每人 分得幾支?共有多少支色鉛筆?
分析:每個同學(xué)分到的色筆相等。這個活動小組有 12 人,比 10 人多 2 人,而色筆多出了( 25-5 ) =20 支 , 2 個人多出 20 支,一個人分得 10 支。列式為( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。
(12)年齡問題:將差為一定值的兩個數(shù)作為題中的一個條件,這種應(yīng)用題被稱為“年齡問題”。
解題關(guān)鍵:年齡問題與和差、和倍、 差倍問題類似,主要特點是隨著時間的變化,年歲不斷增長,但大小兩個不同年齡的差是不會改變的,因此,年齡問題是一種“差不變”的問題,解題時,要善于利用差不變的特點。
例 父親 48 歲,兒子 21 歲。問幾年前父親的年齡是兒子的 4 倍?
分析:父子的年齡差為 48-21=27 (歲)。由于幾年前父親年齡是兒子的 4 倍,可知父子年齡的倍數(shù)差是( 4-1 )倍。這樣可以算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的 4 倍。列式為: 21-( 48-21 )÷( 4-1 ) =12 (年)
(13)雞兔問題:已知“雞兔”的總頭數(shù)和總腿數(shù)。求“雞”和“兔”各多少只的一類應(yīng)用題。通常稱為“雞兔問題”又稱雞兔同籠問題
解題關(guān)鍵:解答雞兔問題一般采用假設(shè)法,假設(shè)全是一種動物(如全是“雞”或全是“兔”,然后根據(jù)出現(xiàn)的腿數(shù)差,可推算出某一種的頭數(shù)。
解題規(guī)律:(總腿數(shù)-雞腿數(shù)×總頭數(shù))÷一只雞兔腿數(shù)的差=兔子只數(shù)
兔子只數(shù)=(總腿數(shù)-2×總頭數(shù))÷2
如果假設(shè)全是兔子,可以有下面的式子:
雞的只數(shù)=(4×總頭數(shù)- 總腿數(shù))÷2
兔的頭數(shù)=總頭數(shù)-雞的只數(shù)
例 雞兔同籠共 50 個頭, 170 條腿。問雞兔各有多少只?
兔子只數(shù) ( 170-2 × 50 )÷ 2 =35 (只) 雞的只數(shù) 50-35=15 (只)
三年級數(shù)學(xué)知識點復(fù)習(xí)
1、整十整百數(shù)乘一位數(shù)
口算整十整百數(shù)乘一位數(shù),可以先用整十整百數(shù)“0”前面的數(shù)乘一位數(shù),再在積的末尾添上擋住的“0”。
2、兩、三位數(shù)乘一位數(shù)的估算方法
把兩位數(shù)或三位數(shù)看作與它接近的整十?dāng)?shù)或整百數(shù)進(jìn)行估算。
3、求一個數(shù)是另一個數(shù)的幾倍
求一個數(shù)是另一個數(shù)的幾倍,就是求一個數(shù)里面有幾個另一個數(shù),用一個數(shù)÷另一個數(shù),得數(shù)后面不用加單位名稱。
4、分?jǐn)?shù)的意義:把一個整體平均分成若干份,表示1份或幾份的數(shù)就是分?jǐn)?shù)。
表示:把一個整體平均分成5份,取其中的兩份
表示:把一個整體平均分成4份,取其中的一份
5、比較大小的方法:
(1)分子相同,分母小的分?jǐn)?shù)就大。
(2)分母相同:分子大的分?jǐn)?shù)就大。
數(shù)學(xué)大數(shù)知識點
1. 10個一萬是十萬,10個十萬是一百萬,10個一百萬是一千萬,10個一千萬是一億。
相鄰兩個計數(shù)單位之間的進(jìn)率是“十”,這種計數(shù)方法叫做十進(jìn)制計數(shù)法。
特別注意:計數(shù)單位與數(shù)位的區(qū)別。
計數(shù)單位
數(shù)字表示
2、多位數(shù)的讀法:
①、從高位數(shù)讀起,一級一級往下讀。
②、萬級的數(shù)要按照個級的數(shù)的讀法來讀,再在后面加一個萬字。
③、每級末尾不管有幾個零都不讀,其他數(shù)位有一個“零”或連續(xù)幾個“零”,都只讀一個“零”。
3、多位數(shù)的寫法
小結(jié):①、從高級寫起,一級一級往下寫。
②、當(dāng)哪一位上一個計數(shù)單位也沒有,就在哪一位上寫0。
特別注意:多位數(shù)的讀寫都先劃上分級線。
4、多位數(shù)的大小比較:
小結(jié):①、位數(shù)多的時候,這個數(shù)就比較大。
②、當(dāng)這兩個數(shù)位數(shù)相同的時候,就從最高位開始比,哪個數(shù)位上的數(shù)大,這個數(shù)就大。
5、“萬”“億”作單位的數(shù):
有時候,為了讀寫方便,我們把整萬(億)的數(shù)改寫成有“萬”(億)做單位的數(shù)。
方法概括:分級、去0,寫萬(寫億)
6、求近似數(shù):
這種求近似數(shù)的方法叫“四舍五入法”,是“舍”還是“入”,要看省略的尾數(shù)部分的最高位是小于5還是等于或大于5。
方法概括:分級、去尾、四舍五入約
近似數(shù)的取值范圍:近似數(shù)+4999(最大)
近似數(shù)—5000(最小)
7、表示物體個數(shù)的數(shù):0、1、2、3、4、5、6 …….叫自然數(shù)一個物體也沒有:用0來表示。0也是自然數(shù)。最小的自然數(shù)是0,沒有最大的自然數(shù),自然數(shù)的個數(shù)是無限的。
8、計算工具的認(rèn)識:算盤,計算器
9、測量得到的數(shù)都是近似數(shù),數(shù)出來的數(shù)都是準(zhǔn)確數(shù)
新西師版數(shù)學(xué)六年級下冊知識點
大學(xué)院校在線查
高考熱門一鍵查
有疑問就來發(fā)現(xiàn)