點(diǎn)到直線的距離公式及其證明方法是什么
連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短,這條垂線段的長度,叫做點(diǎn)到直線的距離。下面是計算點(diǎn)到直線距離的公式,快來看看吧!
點(diǎn)到直線的距離公式
點(diǎn)到直線距離公式的證明法
定義法證:根據(jù)定義,點(diǎn)P(x?,y?)到直線l:Ax+By+C=0的距離是點(diǎn)P到直線l的垂線段的長,設(shè)點(diǎn)P到直線的垂線為l',垂足為Q,則l'的斜率為B/A則l'的解析式為y-y?=(B/A)(x-x?)把l和l'聯(lián)立得l與l'的交點(diǎn)Q的坐標(biāo)為((B^2x?-ABy?-AC)/(A^2+B^2), (A^2y?-ABx?-BC)/(A^2+B^2))由兩點(diǎn)間距離公式得:
PQ^2=[(B^2x?-ABy?-AC)/(A^2+B^2)-x0]^2
+[(A^2y?-ABx?-BC)/(A^2+B^2)-y0]^2
=[(-A^2x?-ABy?-AC)/(A^2+B^2)]^2
+[(-ABx?-B^2y?-BC)/(A^2+B^2)]^2
=[A(-By?-C-Ax?)/(A^2+B^2)]^2
+[B(-Ax?-C-By?)/(A^2+B^2)]^2
=A^2(Ax?+By?+C)^2/(A^2+B^2)^2
+B^2(Ax?+By?+C)^2/(A^2+B^2)^2
=(A^2+B^2)(Ax?+By?+C)^2/(A^2+B^2)^2
=(Ax?+By?+C)^2/(A^2+B^2)
所以PQ=|Ax?+By?+C|/√(A^2+B^2),公式得證。
大學(xué)院校在線查
高考熱門一鍵查
有疑問就來發(fā)現(xiàn)