提高數(shù)學考試成績訣竅方法之一是,在考試前進行高水平高效率的復習,花時間去攻克自己不熟悉的題目,不斷地把陌生轉化為熟悉。下面是小編整理的數(shù)學必修三第一章知識點總結,僅供參考希望能夠幫助到大家。
數(shù)學必修三第一章知識點總結
1、算法概念:
在數(shù)學上,現(xiàn)代意義上的“算法”通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內完成.
2. 算法的特點:
(1)有限性:一個算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.
(2)確定性:算法中的每一步應該是確定的并且能有效地執(zhí)行且得到確定的結果,而不應當是模棱兩可.
(3)順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進行下一步,并且每一步都準確無誤,才能完成問題.
(4)不唯一性:求解某一個問題的解法不一定是唯一的,對于一個問題可以有不同的算法.
(5)普遍性:很多具體的問題,都可以設計合理的算法去解決,如心算、計算器計算都要經(jīng)過有限、事先設計好的步驟加以解決.
1.1.2 程序框圖
1、程序框圖基本概念:
(一)程序構圖的概念:程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形。
一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明。
(二)構成程序框的圖形符號及其作用
程序框 名稱 功能
起止框 表示一個算法的起始和結束,是任何流程圖不可少的。
輸入、輸出框 表示一個算法輸入和輸出的信息,可用在算法中任何需要輸入、輸出的位置。
處理框 賦值、計算,算法中處理數(shù)據(jù)需要的算式、公式等分別寫在不同的用以處理數(shù)據(jù)的處理框內。
判斷框 判斷某一條件是否成立,成立時在出口處標明“是”或“Y”;不成立時明“否”或“N”。
學習這部分知識的時候,要掌握各個圖形的形狀、作用及使用規(guī)則,畫程序框圖的規(guī)則如下:
1、使用標準的圖形符號。
2、框圖一般按從上到下、從左到右的方向畫。
3、除判斷框外,大多數(shù)流程圖符號只有一個進入點和一個退出點。判斷框具有超過一個退出點的唯一符號。
4、判斷框分兩大類,一類判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個結果;另一類是多分支判斷,有幾種不同的結果。
5、在圖形符號內描述的語言要非常簡練清楚。
(三)、算法的三種基本邏輯結構:順序結構、條件結構、循環(huán)結構。
1、順序結構:順序結構是最簡單的算法結構,語句與語句之間,框與框之間是按從上到下的順序進行的,它是由若干個依次執(zhí)行的處理步驟組成的,它是任何一個算法都離不開的一種基本算法結構。
順序結構在程序框圖中的體現(xiàn)就是用流程線將程序框自上而下地連接起來,按順序執(zhí)行算法步驟。如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)行B框所指定的操作。
2、條件結構:
條件結構是指在算法中通過對條件的判斷根據(jù)條件是否成立而選擇不同流向的算法結構。條件P是否成立而選擇執(zhí)行A框或B框。無論P條件是否成立,只能執(zhí)行A框或B框之一,不可能同時執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行。一個判斷結構可以有多個判斷框。
3、循環(huán)結構:在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復執(zhí)行某一處理步驟的情況,這就是循環(huán)結構,反復執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結構中一定包含條件結構。循環(huán)結構又稱重復結構,循環(huán)結構可細分為兩類:
(1)、一類是當型循環(huán)結構,如下左圖所示,它的功能是當給定的條件P成立時,執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復執(zhí)行A框,直到某一次條件P不成立為止,此時不再執(zhí)行A框,離開循環(huán)結構。
(2)、另一類是直到型循環(huán)結構,如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時不再執(zhí)行A框,離開循環(huán)結構。
注意:1循環(huán)結構要在某個條件下終止循環(huán),這就需要條件結構來判斷。因此,循環(huán)結構中一定包含條件結構,但不允許“死循環(huán)”。2在循環(huán)結構中都有一個計數(shù)變量和累加變量。計數(shù)變量用于記錄循環(huán)次數(shù),累加變量用于輸出結果。計數(shù)變量和累加變量一般是同步執(zhí)行的,累加一次,計數(shù)一次。
1.2.1 輸入、輸出語句和賦值語句
1、輸入語句
(1)輸入語句的一般格式
(2)輸入語句的作用是實現(xiàn)算法的輸入信息功能;(3)“提示內容”提示用戶輸入什么樣的信息,變量是指程序在運行時其值是可以變化的量;(4)輸入語句要求輸入的值只能是具體的常數(shù),不能是函數(shù)、變量或表達式;(5)提示內容與變量之間用分號“;”隔開,若輸入多個變量,變量與變量之間用逗號“,”隔開。
2、輸出語句
(1)輸出語句的一般格式
(2)輸出語句的作用是實現(xiàn)算法的輸出結果功能;(3)“提示內容”提示用戶輸入什么樣的信息,表達式是指程序要輸出的數(shù)據(jù);(4)輸出語句可以輸出常量、變量或表達式的值以及字符。
3、賦值語句
(1)賦值語句的一般格式
(2)賦值語句的作用是將表達式所代表的值賦給變量;
(3)賦值語句中的“=”稱作賦值號,與數(shù)學中的等號的意義是不同的。賦值號的左右兩邊不能對換,它將賦值號右邊的表達式的值賦給賦值號左邊的變量;
(4)賦值語句左邊只能是變量名字,而不是表達式,右邊表達式可以是一個數(shù)據(jù)、常量或算式;(5)對于一個變量可以多次賦值。
注意:①賦值號左邊只能是變量名字,而不能是表達式。如:2=X是錯誤的。②賦值號左右不能對換。如“A=B”“B=A”的含義運行結果是不同的。③不能利用賦值語句進行代數(shù)式的演算。(如化簡、因式分解、解方程等)④賦值號“=”與數(shù)學中的等號意義不同。
1.2.2條件語句
1、條件語句的一般格式有兩種:(1)IF—THEN—ELSE語句;(2)IF—THEN語句。2、IF—THEN—ELSE語句
1.2.3循環(huán)語句
1、WHILE語句
循環(huán)結構是由循環(huán)語句來實現(xiàn)的。對應于程序框圖中的兩種循環(huán)結構,一般程序設計語言中也有當型(WHILE型)和直到型(UNTIL型)兩種語句結構。即WHILE語句和UNTIL語句。
當計算機遇到WHILE語句時,先判斷條件的真假,如果條件符合,就執(zhí)行WHILE與WEND之間的循環(huán)體;然后再檢查上述條件,如果條件仍符合,再次執(zhí)行循環(huán)體,這個過程反復進行,直到某一次條件不符合為止。這時,計算機將不執(zhí)行循環(huán)體,直接跳到WEND語句后,接著執(zhí)行WEND之后的語句。因此,當型循環(huán)有時也稱為“前測試型”循環(huán)。
2、UNTIL語句
直到型循環(huán)又稱為“后測試型”循環(huán),從UNTIL型循環(huán)結構分析,計算機執(zhí)行該語句時,先執(zhí)行一次循環(huán)體,然后進行條件的判斷,如果條件不滿足,繼續(xù)返回執(zhí)行循環(huán)體,然后再進行條件的判斷,這個過程反復進行,直到某一次條件滿足時,不再執(zhí)行循環(huán)體,跳到LOOP UNTIL語句后執(zhí)行其他語句,是先執(zhí)行循環(huán)體后進行條件判斷的循環(huán)語句。
1.3.1輾轉相除法與更相減損術
1、輾轉相除法。也叫歐幾里德算法,用輾轉相除法求最大公約數(shù)的步驟如下:
(1):用較大的數(shù)m除以較小的數(shù)n得到一個商 和一個余數(shù) ;(2):若 =0,則n為m,n的最大公約數(shù);若 ≠0,則用除數(shù)n除以余數(shù) 得到一個商 和一個余數(shù) ;(3):若 =0,則 為m,n的最大公約數(shù);若 ≠0,則用除數(shù) 除以余數(shù) 得到一個商 和一個余數(shù) ;…… 依次計算直至 =0,此時所得到的 即為所求的最大公約數(shù)。
2、更相減損術
我國早期也有求最大公約數(shù)問題的算法,就是更相減損術。在《九章算術》中有更相減損術求最大公約數(shù)的步驟:可半者半之,不可半者,副置分母子之數(shù),以少減多,更相減損,求其等也,以等數(shù)約之。
翻譯為:(1):任意給出兩個正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡;若不是,執(zhí)行第二步。(2):以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)(等數(shù))就是所求的最大公約數(shù)。
3、輾轉相除法與更相減損術的區(qū)別:
(1)都是求最大公約數(shù)的方法,計算上輾轉相除法以除法為主,更相減損術以減法為主,計算次數(shù)上輾轉相除法計算次數(shù)相對較少,特別當兩個數(shù)字大小區(qū)別較大時計算次數(shù)的區(qū)別較明顯。
(2)從結果體現(xiàn)形式來看,輾轉相除法體現(xiàn)結果是以相除余數(shù)為0則得到,而更相減損術則以減數(shù)與差相等而得到
1.3.2秦九韶算法與排序
1、秦九韶算法概念:
f(x)=anxn+an-1xn-1+….+a1x+a0求值問題
f(x)=anxn+an-1xn-1+….+a1x+a0=( anxn-1+an-1xn-2+….+a1)x+a0 =(( anxn-2+an-1xn-3+….+a2)x+a1)x+a0
=......=(...( anx+an-1)x+an-2)x+...+a1)x+a0
求多項式的值時,首先計算最內層括號內依次多項式的值,即v1=anx+an-1
然后由內向外逐層計算一次多項式的值,即
v2=v1x+an-2 v3=v2x+an-3 ...... vn=vn-1x+a0這樣,把n次多項式的求值問題轉化成求n個一次多項式的值的問題。
2、兩種排序方法:直接插入排序和冒泡排序
1、直接插入排序
基本思想:插入排序的思想就是讀一個,排一個。將第1個數(shù)放入數(shù)組的第1個元素中,以后讀入的數(shù)與已存入數(shù)組的數(shù)進行比較,確定它在從大到小的排列中應處的位置.將該位置以及以后的元素向后推移一個位置,將讀入的新數(shù)填入空出的位置中.(由于算法簡單,可以舉例說明)
2、冒泡排序
基本思想:依次比較相鄰的兩個數(shù),把大的放前面,小的放后面.即首先比較第1個數(shù)和第2個數(shù),大數(shù)放前,小數(shù)放后.然后比較第2個數(shù)和第3個數(shù)......直到比較最后兩個數(shù).第一趟結束,最小的一定沉到最后.重復上過程,仍從第1個數(shù)開始,到最后第2個數(shù)...... 由于在排序過程中總是大數(shù)往前,小數(shù)往后,相當氣泡上升,所以叫冒泡排序.
1.3.3進位制
1、概念:進位制是一種記數(shù)方式,用有限的數(shù)字在不同的位置表示不同的數(shù)值??墒褂脭?shù)字符號的個數(shù)稱為基數(shù),基數(shù)為n,即可稱n進位制,簡稱n進制?,F(xiàn)在最常用的是十進制,通常使用10個阿拉伯數(shù)字0-9進行記數(shù)。對于任何一個數(shù),我們可以用不同的進位制來表示。比如:十進數(shù)57,可以用二進制表示為111001,也可以用八進制表示為71、用十六進制表示為39,它們所代表的數(shù)值都是一樣的。
數(shù)學兩個平面的位置關系知識點
(1)兩個平面互相平行的定義:空間兩平面沒有公共點
(2)兩個平面的位置關系:
兩個平面平行——沒有公共點;兩個平面相交——有一條公共直線。
a、平行
兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行于另一個平面,那么這兩個平面平行。
兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。
b、相交
二面角
(1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
(2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
兩平面垂直
兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥
兩平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直
兩個平面垂直的性質定理:如果兩個平面互相垂直,那么在一個平面內垂直于交線的直線垂直于另一個平面。
二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關系)
高中學數(shù)學的技巧
1.重視課堂的學習效率
新知識的接受和數(shù)學能力的培養(yǎng),主要是在課堂上進行,所以要特別重視課堂的學習效率,上課時要緊跟老師的思路,積極開展思維,預測下面的步驟,比較自己的解題思路與老師所講的有哪些不同。課后要及時復習,不留疑點,對不懂的地方要及時請教老師或同學,切忌不懂將懂,或將不懂的地方跳過。課后還要注重基礎知識的學習和基本技能的培養(yǎng),要多記公式、定理,因為它們是學好數(shù)學的關鍵和必備條件。
2.多做習題,養(yǎng)成良好的解題習慣
要想學好數(shù)學,多做題是不可避免的。當然,多做題并不等于搞題海戰(zhàn)術。做的題目要有代表性,不能胡子眉毛一把抓,碰到哪道題就做哪道題。有些題適合我們做,而有些題卻超出了我們的能力范圍,做這些題目只能是浪費我們寶貴的時間,不會達到任何效果。做的題要難易適中,通過做些有代表的題目,要力爭能舉一反三。數(shù)學是一門邏輯性很強的學科,需要縝密的思維,解題要有條理,在做題的過程中學會熟練運用正確的解題方法,掌握一些基本題型的解題規(guī)律。只有平時大量的訓練,見多了、做多了,自然就熟能生巧,考試的時候就會應付自如,不至于亂了陣腳。
數(shù)學必修三第一章知識點總結
大學院校在線查
有疑問就來發(fā)現(xiàn)