日本中文字幕有码在线视频三级,欧美视频一区亚洲不要,久久久综合九色综合88,久久综合久久首页

          更三高考訂閱頁

          高一上冊數(shù)學(xué)必修四知識點總結(jié)

          2022-02-21
          更三高考院校庫

          【#高一# 導(dǎo)語】高一新生要作好充分思想準(zhǔn)備,以自信、寬容的心態(tài),盡快融入集體,適應(yīng)新同學(xué)、適應(yīng)新校園環(huán)境、適應(yīng)與初中迥異的紀(jì)律制度。記住:是你主動地適應(yīng)環(huán)境,而不是環(huán)境適應(yīng)你。因為你走向社會參加工作也得適應(yīng)社會。以下內(nèi)容是為你整理的《高一上冊數(shù)學(xué)必修四知識點總結(jié)》,希望你不負(fù)時光,努力向前,加油!高一上冊數(shù)學(xué)必修四知識點總結(jié)

          1.高一上冊數(shù)學(xué)必修四知識點總結(jié)

          平面的一般式方程

          Ax+By+Cz+D=0

          其中n=(A,B,C)是平面的法向量,D是將平面平移到坐標(biāo)原點所需距離(所以D=0時,平面過原點)

          向量的模(長度)

          給定一個向量V(x,y,z),則|V|=sqrt(x*x+y*y+z*z)

          向量的點積(內(nèi)積)

          給定兩個向量V1(x1,y1,z1)和V2(x2,y2,z2)則他們的內(nèi)積是

          V1V2=x1x2+y1y2+z1z2

          2.高一上冊數(shù)學(xué)必修四知識點總結(jié)

          1、平面三角形證法

          在△ABC中,BC=a,AC=b,AB=c,作AD⊥BC于D,則AD=c*sinB,DC=a-BD=a-c*cosB

          在Rt△ACD中,

          b2=AD2+DC2=(c*sinB)2+(a-c*cosB)2

          =c2sin2B+a2-2ac*cosB+c2cos2B

          =c2(sin2B+cos2B)+a2-2ac*cosB

          =c2+a2-2ac*cosB

          2、平面向量證法

          有a+b=c(平行四邊形定則:兩個鄰邊之間的對角線代表兩個鄰邊大小)

          ∴c·c=(a+b)·(a+b)

          ∴c2=a·a+2a·b+b·b∴c2=a2+b2+2|a||b|cos(π-θ)

          又∵cos(π-θ)=-cosθ(誘導(dǎo)公式)

          ∴c2=a2+b2-2|a||b|cosθ

          此即c2=a2+b2-2abcosC

          即cosC=(a2+b2-c2)/2*a*b

          3.高一上冊數(shù)學(xué)必修四知識點總結(jié)

          1.函數(shù)的奇偶性。

          (1)若f(x)是偶函數(shù),那么f(x)=f(-x)。

          (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù))。

          (3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0)。

          (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性。

          (5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性。

          2.復(fù)合函數(shù)的有關(guān)問題。

          (1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

          (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定。

          3.函數(shù)圖像(或方程曲線的對稱性)。

          (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上。

          (2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然。

          (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。

          (4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0。

          (5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱。

          4.函數(shù)的周期性。

          0)恒成立,則y=f(x)是周期為2a的周期函數(shù)。

          (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù)。

          (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù)。

          (4)若y=f(x)關(guān)于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù)。

          5.判斷對應(yīng)是否為映射時,抓住兩點。

          (1)A中元素必須都有象且。

          (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象。

          6.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

          7.對于反函數(shù),應(yīng)掌握以下一些結(jié)論。

          (1)定義域上的單調(diào)函數(shù)必有反函數(shù)。

          (2)奇函數(shù)的反函數(shù)也是奇函數(shù)。

          (3)定義域為非單元素集的偶函數(shù)不存在反函數(shù)。

          (4)周期函數(shù)不存在反函數(shù)。

          (5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性。

          (6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。

          8.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合。

          二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系。

          9.依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題。

          10.恒成立問題的處理方法。

          (1)分離參數(shù)法。

          (2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解。

          4.高一上冊數(shù)學(xué)必修四知識點總結(jié)

          定義:

          形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

          定義域和值域:

          當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當(dāng)x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進入函數(shù)的值域

          性質(zhì):

          對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

          首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:

          0,則a可以是任意實數(shù);

          排除了為0這種可能,即對于x<0和x>0的所有實數(shù),q不能是偶數(shù);

          排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負(fù)數(shù)。

          總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:

          如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);

          如果a為負(fù)數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。

          在x大于0時,函數(shù)的值域總是大于0的實數(shù)。

          在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。

          而只有a為正數(shù),0才進入函數(shù)的值域。

          由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

          可以看到:

          (1)所有的圖形都通過(1,1)這點。

          (2)當(dāng)a大于0時,冪函數(shù)為單調(diào)遞增的,而a小于0時,冪函數(shù)為單調(diào)遞減函數(shù)。

          (3)當(dāng)a大于1時,冪函數(shù)圖形下凹;當(dāng)a小于1大于0時,冪函數(shù)圖形上凸。

          (4)當(dāng)a小于0時,a越小,圖形傾斜程度越大。

          (5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。

          (6)顯然冪函數(shù)_。

          5.高一上冊數(shù)學(xué)必修四知識點總結(jié)

          【公式一】

          設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

          sin(2kπ+α)=sinα(k∈Z)

          cos(2kπ+α)=cosα(k∈Z)

          tan(2kπ+α)=tanα(k∈Z)

          cot(2kπ+α)=cotα(k∈Z)

          【公式二】

          設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

          sin(π+α)=-sinα

          cos(π+α)=-cosα

          tan(π+α)=tanα

          cot(π+α)=cotα

          【公式三】

          任意角α與-α的三角函數(shù)值之間的關(guān)系:

          sin(-α)=-sinα

          cos(-α)=cosα

          tan(-α)=-tanα

          cot(-α)=-cotα

          【公式四】

          利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

          sin(π-α)=sinα

          cos(π-α)=-cosα

          tan(π-α)=-tanα

          cot(π-α)=-cotα

          【公式五】

          利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

          sin(2π-α)=-sinα

          cos(2π-α)=cosα

          tan(2π-α)=-tanα

          cot(2π-α)=-cotα

          【公式六】

          π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:

          sin(π/2+α)=cosα

          cos(π/2+α)=-sinα

          tan(π/2+α)=-cotα

          cot(π/2+α)=-tanα

          sin(π/2-α)=cosα

          cos(π/2-α)=sinα

          tan(π/2-α)=cotα

          cot(π/2-α)=tanα

          sin(3π/2+α)=-cosα

          cos(3π/2+α)=sinα

          tan(3π/2+α)=-cotα

          cot(3π/2+α)=-tanα

          sin(3π/2-α)=-cosα

          cos(3π/2-α)=-sinα

          tan(3π/2-α)=cotα

          cot(3π/2-α)=tanα

          (以上k∈Z)

          [@]35[@]
          2023高考備考攻略

          高考資訊推薦

          高一數(shù)學(xué)

          更三高考為各位高一生整理了高一數(shù)學(xué)學(xué)習(xí)課件、高一數(shù)學(xué)學(xué)習(xí)提分 ... [進入專欄]

          報考信息

          動態(tài)簡章計劃錄取分?jǐn)?shù)