日本中文字幕有码在线视频三级,欧美视频一区亚洲不要,久久久综合九色综合88,久久综合久久首页

          更三高考訂閱頁

          高一上冊數(shù)學必修五復習知識點

          Ai高考 · 高一數(shù)學
          2022-02-21
          更三高考院校庫

          【#高一# 導語】高一新生要根據自己的條件,以及高中階段學科知識交叉多、綜合性強,以及考查的知識和思維觸點廣的特點,找尋一套行之有效的學習方法。今天為各位同學整理了《高一上冊數(shù)學必修五復習知識點》,希望對您的學習有所幫助!高一上冊數(shù)學必修五復習知識點

          1.高一上冊數(shù)學必修五復習知識點

          正棱錐的定義:

          如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

          正棱錐的性質:

          各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

          多個特殊的直角三角形

          esp:

          a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

          b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

          2.高一上冊數(shù)學必修五復習知識點

          (1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

          (2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。

          (3)函數(shù)圖形都是下凹的。

          (4)a大于1,則指數(shù)函數(shù)單調遞增;a小于1大于0,則為單調遞減的。

          (5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

          (6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。

          (7)函數(shù)總是通過(0,1)這點。

          (8)顯然指數(shù)函數(shù)XX。

          3.高一上冊數(shù)學必修五復習知識點

          1.多面體的結構特征

          (1)棱柱有兩個面相互平行,其余各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。

          正棱柱:側棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側棱垂直于底面,側面是矩形。

          (2)棱錐的底面是任意多邊形,側面是有一個公共頂點的三角形。

          正棱錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體。反過來,正棱錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心。

          (3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。

          2.旋轉體的結構特征

          (1)圓柱可以由矩形繞一邊所在直線旋轉一周得到。

          (2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉一周得到。

          (3)圓臺可以由直角梯形繞直角腰所在直線旋轉一周或等腰梯形繞上下底面中心所在直線旋轉半周得到,也可由平行于底面的平面截圓錐得到。

          (4)球可以由半圓面繞直徑旋轉一周或圓面繞直徑旋轉半周得到。

          3.空間幾何體的三視圖

          空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側視圖、俯視圖。

          三視圖的長度特征:“長對正,寬相等,高平齊”,即正視圖和側視圖一樣高,正視圖和俯視圖一樣長,側視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實、虛線的畫法。

          4.高一上冊數(shù)學必修五復習知識點

          1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

          2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

          3、a-邊長,S=6a2,V=a3

          4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

          5、棱柱S-h(huán)-高V=Sh

          6、棱錐S-h(huán)-高V=Sh/3

          7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

          8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

          9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

          10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)

          11、r-底半徑h-高V=πr^2h/3

          12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6

          14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

          15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

          16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4

          17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

          5.高一上冊數(shù)學必修五復習知識點

          直線和平面的位置關系:

          直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行

          ①直線在平面內——有無數(shù)個公共點

          ②直線和平面相交——有且只有一個公共點

          直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。

          esp.空間向量法(找平面的法向量)

          規(guī)定:

          a、直線與平面垂直時,所成的角為直角,

          b、直線與平面平行或在平面內,所成的角為0°角

          由此得直線和平面所成角的取值范圍為[0°,90°]

          最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角

          三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直

          esp.直線和平面垂直

          直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

          直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面。

          直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

          ③直線和平面平行——沒有公共點

          直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

          直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。

          直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行。

          [@]35[@]
          2023高考備考攻略

          高考資訊推薦

          高一數(shù)學

          更三高考為各位高一生整理了高一數(shù)學學習課件、高一數(shù)學學習提分 ... [進入專欄]

          報考信息

          動態(tài)簡章計劃錄取分數(shù)