日本中文字幕有码在线视频三级,欧美视频一区亚洲不要,久久久综合九色综合88,久久综合久久首页

          更三高考訂閱頁

          高一下冊數(shù)學必修五知識點

          Ai高考 · 高一數(shù)學
          2022-02-21
          更三高考院校庫

          【#高一# 導語】進入高中后,很多新生有這樣的心理落差,比自己成績優(yōu)秀的大有人在,很少有人注意到自己的存在,心理因此失衡,這是正常心理,但是應盡快進入學習狀態(tài)。高一頻道為正在努力學習的你整理了《高一下冊數(shù)學必修五知識點》,希望對你有幫助!高一下冊數(shù)學必修五知識點

          1.高一下冊數(shù)學必修五知識點

          1.數(shù)列的函數(shù)理解:

          ①數(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。數(shù)列可以看作一個定義域為正整數(shù)集N或其有限子集{1,2,3,…,n}的函數(shù),其中的{1,2,3,…,n}不能省略。

          ②用函數(shù)的觀點認識數(shù)列是重要的思想方法,一般情況下函數(shù)有三種表示方法,數(shù)列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項公式給出數(shù)列和以遞推公式給出數(shù)列。

          ③函數(shù)不一定有解析式,同樣數(shù)列也并非都有通項公式。

          2.通項公式:數(shù)列的第N項an與項的序數(shù)n之間的關(guān)系可以用一個公式an=f(n)來表示,這個公式就叫做這個數(shù)列的通項公式。

          數(shù)列通項公式的特點:

          (1)有些數(shù)列的通項公式可以有不同形式,即不。

          (2)有些數(shù)列沒有通項公式(如:素數(shù)由小到大排成一列2,3,5,7,11,...)。

          3.遞推公式:如果數(shù)列{an}的第n項與它前一項或幾項的關(guān)系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的遞推公式。

          數(shù)列遞推公式特點:

          (1)有些數(shù)列的遞推公式可以有不同形式,即不。

          (2)有些數(shù)列沒有遞推公式。

          有遞推公式不一定有通項公式。

          注:數(shù)列中的項必須是數(shù),它可以是實數(shù),也可以是復數(shù)。

          2.高一下冊數(shù)學必修五知識點

          1.等比中項

          如果在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項。

          有關(guān)系:

          注:兩個非零同號的實數(shù)的等比中項有兩個,它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。

          2.等比數(shù)列通項公式

          an=a1*q’(n-1)(其中首項是a1,公比是q)

          an=Sn-S(n-1)(n≥2)

          前n項和

          當q≠1時,等比數(shù)列的前n項和的公式為

          Sn=a1(1-q’n)/(1-q)=(a1-a1*q’n)/(1-q)(q≠1)

          當q=1時,等比數(shù)列的前n項和的公式為

          Sn=na1

          3.等比數(shù)列前n項和與通項的關(guān)系

          an=a1=s1(n=1)

          an=sn-s(n-1)(n≥2)

          4.等比數(shù)列性質(zhì)

          (1)若m、n、p、q∈N*,且m+n=p+q,則am·an=ap·aq;

          (2)在等比數(shù)列中,依次每k項之和仍成等比數(shù)列。

          (3)從等比數(shù)列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

          (4)等比中項:q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項。

          記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

          另外,一個各項均為正數(shù)的等比數(shù)列各項取同底指數(shù)冪后構(gòu)成一個等差數(shù)列;反之,以任一個正數(shù)C為底,用一個等差數(shù)列的各項做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個意義下,我們說:一個正項等比數(shù)列與等差數(shù)列是“同構(gòu)”的。

          (5)等比數(shù)列前n項之和Sn=a1(1-q’n)/(1-q)

          (6)任意兩項am,an的關(guān)系為an=am·q’(n-m)

          (7)在等比數(shù)列中,首項a1與公比q都不為零。

          注意:上述公式中a’n表示a的n次方。

          3.高一下冊數(shù)學必修五知識點

          差數(shù)列的基本性質(zhì)

          ⑴公差為d的等差數(shù)列,各項同加一數(shù)所得數(shù)列仍是等差數(shù)列,其公差仍為d.

          ⑵公差為d的等差數(shù)列,各項同乘以常數(shù)k所得數(shù)列仍是等差數(shù)列,其公差為kd.

          ⑶若{a}、為等差數(shù)列,則{a±b}與{ka+b}(k、b為非零常數(shù))也是等差數(shù)列.

          ⑷對任何m、n,在等差數(shù)列{a}中有:a=a+(n-m)d,特別地,當m=1時,便得等差數(shù)列的通項公式,此式較等差數(shù)列的通項公式更具有一般性.

          ⑸、一般地,如果l,k,p,…,m,n,r,…皆為自然數(shù),且l+k+p+…=m+n+r+…(兩邊的自然數(shù)個數(shù)相等),那么當{a}為等差數(shù)列時,有:a+a+a+…=a+a+a+….

          ⑹公差為d的等差數(shù)列,從中取出等距離的項,構(gòu)成一個新數(shù)列,此數(shù)列仍是等差數(shù)列,其公差為kd(k為取出項數(shù)之差).

          ⑺如果{a}是等差數(shù)列,公差為d,那么,a,a,…,a、a也是等差數(shù)列,其公差為-d;在等差數(shù)列{a}中,a-a=a-a=md.(其中m、k、)

          ⑻在等差數(shù)列中,從第一項起,每一項(有窮數(shù)列末項除外)都是它前后兩項的等差中項.

          0時,等差數(shù)列中的數(shù)隨項數(shù)的增大而增大;當dm),則s=(a-b).

          ⑹等差數(shù)列{a}中,是n的一次函數(shù),且點(n,)均在直線y=x+(a-)上.

          0,公差d0,則當a≤0且a≥0時,s最小.

          等比數(shù)列的基本性質(zhì)

          ⑴公比為q的等比數(shù)列,從中取出等距離的項,構(gòu)成一個新數(shù)列,此數(shù)列仍是等比數(shù)列,其公比為q(m為等距離的項數(shù)之差).

          ⑵對任何m、n,在等比數(shù)列{a}中有:a=a·q,特別地,當m=1時,便得等比數(shù)列的通項公式,此式較等比數(shù)列的通項公式更具有普遍性.

          ⑶一般地,如果t,k,p,…,m,n,r,…皆為自然數(shù),且t+k,p,…,m+…=m+n+r+…(兩邊的自然數(shù)個數(shù)相等),那么當{a}為等比數(shù)列時,有:a.a.a.…=a.a.a.…..

          ⑷若{a}是公比為q的等比數(shù)列,則{|a|}、{a}、{ka}、{}也是等比數(shù)列,其公比分別為|q|}、{q}、{q}、{}.

          ⑸如果{a}是等比數(shù)列,公比為q,那么,a,a,a,…,a,…是以q為公比的等比數(shù)列.

          0.

          ⑺兩個等比數(shù)列各對應項的積組成的數(shù)列仍是等比數(shù)列,且公比等于這兩個數(shù)列的公比的積.

          4.高一下冊數(shù)學必修五知識點

          1.等差數(shù)列通項公式

          an=a1+(n-1)d

          n=1時a1=S1

          n≥2時an=Sn-Sn-1

          an=kn+b(k,b為常數(shù))推導過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b

          2.等差中項

          由三個數(shù)a,A,b組成的等差數(shù)列可以堪稱最簡單的等差數(shù)列。這時,A叫做a與b的等差中項(arithmeticmean)。

          有關(guān)系:A=(a+b)÷2

          3.前n項和

          倒序相加法推導前n項和公式:

          Sn=a1+a2+a3+·····+an

          =a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

          Sn=an+an-1+an-2+······+a1

          =an+(an-d)+(an-2d)+······+[an-(n-1)d]②

          由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an)

          ∴Sn=n(a1+an)÷2

          等差數(shù)列的前n項和等于首末兩項的和與項數(shù)乘積的一半:

          Sn=n(a1+an)÷2=na1+n(n-1)d÷2

          Sn=dn2÷2+n(a1-d÷2)

          亦可得

          a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

          an=2sn÷n-a1

          有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

          5.高一下冊數(shù)學必修五知識點

          1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內(nèi)表示這個集合,例如,由兩個元素0,1構(gòu)成的集合可表示為{0,1}.

          有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

          例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}.

          無限集有時也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}.

          2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。

          例如:正偶數(shù)構(gòu)成的集合,它的每一個元素都具有性質(zhì):“能被2整除,且大于0”

          而這個集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為

          {x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

          大括號內(nèi)豎線左邊的X表示這個集合的任意一個元素,元素X從實數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。

          一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}

          它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡稱描述法。

          例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

          [@]35[@]
          2023高考備考攻略

          高考資訊推薦

          高一數(shù)學

          更三高考為各位高一生整理了高一數(shù)學學習課件、高一數(shù)學學習提分 ... [進入專欄]

          報考信息

          動態(tài)簡章計劃錄取分數(shù)