日本中文字幕有码在线视频三级,欧美视频一区亚洲不要,久久久综合九色综合88,久久综合久久首页

          更三高考訂閱頁

          高一數(shù)學下冊必修二重要知識點

          Ai高考 · 高一數(shù)學
          2022-02-21
          更三高考院校庫

          【#高一# 導語】所有的人都是凡人,但所有的人都不甘于平庸。我們一定要相信自己,只要艱苦努力,奮發(fā)進取,在絕望中也能尋找到希望,平凡的人生終將會發(fā)出耀眼的光芒。高一頻道為各位同學整理了《高一數(shù)學下冊必修二重要知識點》,希望對你有所幫助!高一數(shù)學下冊必修二重要知識點

          1.高一數(shù)學下冊必修二重要知識點

          反比例函數(shù)

          形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

          自變量x的取值范圍是不等于0的一切實數(shù)。

          反比例函數(shù)圖像性質:

          反比例函數(shù)的圖像為雙曲線。

          由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關于原點對稱。

          另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為?k?。

          如圖,上面給出了k分別為正和負(2和-2)時的函數(shù)圖像。

          0時,反比例函數(shù)圖像經過一,三象限,是減函數(shù)

          當K<0時,反比例函數(shù)圖像經過二,四象限,是增函數(shù)

          反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。

          知識點:

          1.過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

          2.對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

          2.高一數(shù)學下冊必修二重要知識點

          1、直線的傾斜角的范圍是

          在平面直角坐標系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉到和直線重合時所轉的最小正角記為,就叫做直線的傾斜角。當直線與軸重合或平行時,規(guī)定傾斜角為0;

          2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.

          過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的方法。

          3、直線方程:⑴點斜式:直線過點斜率為,則直線方程為,

          ⑵斜截式:直線在軸上的截距為和斜率,則直線方程為

          4、直線與直線的位置關系:

          (1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=0

          5、點到直線的距離公式;

          兩條平行線與的距離是

          6、圓的標準方程:.⑵圓的一般方程:

          注意能將標準方程化為一般方程

          7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

          8、直線與圓的位置關系,通常轉化為圓心距與半徑的關系,或者利用垂徑定理,構造直角三角形解決弦長問題.①相離②相切③相交

          9、解決直線與圓的關系問題時,要充分發(fā)揮圓的平面幾何性質的作用(如半徑、半弦長、弦心距構成直角三角形)直線與圓相交所得弦長.

          3.高一數(shù)學下冊必修二重要知識點

          1、柱、錐、臺、球的結構特征

          (1)棱柱:

          幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形.

          (2)棱錐

          幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.

          (3)棱臺:

          幾何特征:上下底面是相似的平行多邊形側面是梯形側棱交于原棱錐的頂點

          (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成

          幾何特征:底面是全等的圓;母線與軸平行;軸與底面圓的半徑垂直;側面展開圖是一個矩形.

          (5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成

          幾何特征:底面是一個圓;母線交于圓錐的頂點;側面展開圖是一個扇形.

          (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成

          幾何特征:上下底面是兩個圓;側面母線交于原圓錐的頂點;側面展開圖是一個弓形.

          (7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

          幾何特征:球的截面是圓;球面上任意一點到球心的距離等于半徑.

          2、空間幾何體的三視圖

          定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、

          俯視圖(從上向下)

          注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度.

          3、空間幾何體的直觀圖——斜二測畫法

          斜二測畫法特點:原來與x軸平行的線段仍然與x平行且長度不變;

          原來與y軸平行的線段仍然與y平行,長度為原來的一半.

          4、柱體、錐體、臺體的表面積與體積

          (1)幾何體的表面積為幾何體各個面的面積的和.

          (2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

          (3)柱體、錐體、臺體的體積公式

          4.高一數(shù)學下冊必修二重要知識點

          空間兩條直線只有三種位置關系:平行、相交、異面

          1、按是否共面可分為兩類:

          (1)共面:平行、相交

          (2)異面:

          異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

          異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。

          兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

          兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

          2、若從有無公共點的角度看可分為兩類:

          (1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面

          直線和平面的位置關系:

          直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行

          ①直線在平面內——有無數(shù)個公共點

          ②直線和平面相交——有且只有一個公共點

          直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。

          空間向量法(找平面的法向量)

          規(guī)定:a、直線與平面垂直時,所成的角為直角,b、直線與平面平行或在平面內,所成的角為0°角

          由此得直線和平面所成角的取值范圍為[0°,90°]

          最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角

          三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直

          直線和平面垂直

          直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

          直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面。

          直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點

          直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

          直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。

          直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行。

          5.高一數(shù)學下冊必修二重要知識點

          ①異面直線定義:不同在任何一個平面內的兩條直線

          ②異面直線性質:既不平行,又不相交.

          ③異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線

          ④異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.

          求異面直線所成角步驟:

          A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角

          等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補.

          空間直線與平面之間的位置關系

          直線在平面內——有無數(shù)個公共點.

          三種位置關系的符號表示:aαa∩α=Aa‖α

          平面與平面之間的位置關系:平行——沒有公共點;α‖β

          相交——有一條公共直線.α∩β=b

          2、空間中的平行問題

          (1)直線與平面平行的判定及其性質

          線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行.

          線線平行線面平行

          線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,

          那么這條直線和交線平行.線面平行線線平行

          (2)平面與平面平行的判定及其性質

          兩個平面平行的判定定理

          (1)如果一個平面內的兩條相交直線都平行于另一個平面,那么這兩個平面平行

          (線面平行→面面平行),

          (2)如果在兩個平面內,各有兩組相交直線對應平行,那么這兩個平面平行.

          (線線平行→面面平行),

          (3)垂直于同一條直線的兩個平面平行,

          兩個平面平行的性質定理

          (1)如果兩個平面平行,那么某一個平面內的直線與另一個平面平行.(面面平行→線面平行)

          (2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行.(面面平行→線線平行)

          3、空間中的垂直問題

          (1)線線、面面、線面垂直的定義

          ①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.

          ②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直.

          ③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.

          (2)垂直關系的判定和性質定理

          ①線面垂直判定定理和性質定理

          判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直這個平面.

          性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行.

          ②面面垂直的判定定理和性質定理

          判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直.

          性質定理:如果兩個平面互相垂直,那么在一個平面內垂直于他們的交線的直線垂直于另一個平面.

          4、空間角問題

          (1)直線與直線所成的角

          ①兩平行直線所成的角:規(guī)定為.

          ②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.

          ③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.

          (2)直線和平面所成的角

          ①平面的平行線與平面所成的角:規(guī)定為.②平面的垂線與平面所成的角:規(guī)定為.

          ③平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角.

          求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”.

          在“作角”時依定義關鍵作射影,由射影定義知關鍵在于斜線上一點到面的垂線,

          在解題時,注意挖掘題設中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線.

          (3)二面角和二面角的平面角

          ①二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.

          ②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.

          ③直二面角:平面角是直角的二面角叫直二面角.

          兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

          ④求二面角的方法

          定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直于棱的射線得到平面角

          垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

          [@]35[@]
          2023高考備考攻略

          高考資訊推薦

          高一數(shù)學

          更三高考為各位高一生整理了高一數(shù)學學習課件、高一數(shù)學學習提分 ... [進入專欄]

          報考信息

          動態(tài)簡章計劃錄取分數(shù)